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Abstract

Many definitions of entropy are discussed in intimacy with Boltzmann-Gibbs exponential distri-
bution and measure theory. Tsallis introduced a definition that collapses to other definitions when
parameter ‘q’ reaches unity limit. In this definition, Levy statistics are said to be used instead of
Boltzmann distribution. Working with the hypothesis “are we not wrong in being obsessed with
the form of entropy functional?”” aim was to assess if Tsallis definition can be an alternate basis
for Shannon’s information entropy. A mix of analogy, comparison, both inductive and deductive
reasoning were employed as research enquiry tools. The process of enquiry touched many fields
to which entropy is related, including quantum information theory. The enquiry concluded that
entropy additivity is adopted axiomatically in most fields for good reasons, mainly emanating
from measure theory, conforming to the view that the entropy has more to do with topology and
volume growth rather than statistics and distributions.

Keywords: Entropy, Tsallis, Levy and Boltzmann-Gibbs distributions, topology, volume growth,
additivity, quantum information theory, information theory

Introduction

A debate rages amongst the scientific community, and two distinct camps argue the functional
forms of entropy they support. Entropies have been used in thermodynamics, information theory
and many other fields. Kolmogorv introduced entropy of a measure preserving transformation on
probability space; viz. measure theoretic entropy. In dynamic systems entropy is taken to measure
rate of divergence of function orbits. In topology, volume growth, invariant measure theoretic and
topological entropies are defined Gerhard Knieper. (1995). The last decade has been replete with
published works that relate Tsallis entropy to every conceivable domain of science, Information
Science complexity theory included.

Relevance

All debates that relate to entropy allow us to explore solution mechanisms adopted using the so-
called entropy maximization concept. Many of these relate to computer science and its quest for
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works of Liau, C. J. (2002). Particles in a box model of statistical mechanics has been applied to
evidence, belief by Saul L. K., Jaakkola T., & Jordan M. 1. (1996), to product distribution by
Wolpert, D. (2003), in cooperative and non cooperative game theories, bounded rationality by
Wolpert, D. (2004), for multi criteria decision making and control of multi agent systems by Lee,
C. F. & Wolpert, D. (2004). Tsallis entropy has been purportedly used in scaling phenomena in
Sociology, Language, Biology by West, B. J. (2004); in physics, chemistry, economics, medicine,
geophysics, computer science by Gell-Mann, M. & Tsallis (Eds). (2004), by Abe S. & Okamoto
Y. (Eds). (2001), and by Yamano, T. (2004); to Internet Seismic sciences by Abe S. & Suzuki N.
(2003), in Chaos by Tsallis C., Plastino, & Zhang. (1997), Tsallis, Rapisarda, Baranger, & Latora.
(2000). and Tsallis, Baldovin, & Schulze. (2003); in Quantum information theory by Abe S.
(2004 December), and by Tsallis C., Lambert P. W., & Prato D. (2001); seemingly in everything
under the sun. We notice a few have started to adopt Tsallis functional form and thought in In-
formation theory (Kojadinovic, 1., Marichal, J. L., & Roubens, M. (2005)).

Invariance and Scaling

By covering some aspects of scale variations by some very simple examples, formal aim below is
to search an answer to the question: Can we relate the concept of entropy to scales and invari-
ance? Change is the nature of things. What does not change when a reference point of view is
changed is an invariant measure. Shannon used logarithm as a measure of communicable infor-
mation. Usual first example of scale issues in linear systems is scaled partial pivoting in Gaussian
elimination. Use of relative coefficient magnitudes is important to preclude overflow. An inter-
esting example applying the concept of invariance is that of rotation of axes. Chemists plot trian-
gle diagrams to show flammability envelopes. These diagrams can be easily plotted as right angle
triangle diagrams in excel. Commercial triangle graph paper is equilateral triangular. The right
triangular Graph 1 can be rotated to obtain an equilateral triangular Graph 2
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Graph 2
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Solution of quartic is an example that comes from theory of invariance group relationships be-
tween coefficients of polynomials that evolved while Galois proved that polynomials with non
prime compositional indices could not be solved. Feedback control systems that translate initiator
signals from units of current to disparately different indicated units like those of temperature use
“scaling over the signal band width” to change figures between completely differing signal carrier
channel units. What is not apparent to casual observation is that unless additivity holds in each
carrier domain, this translation is impossible. Phenomenological scaling is used to establish links
and analogy between phenomena that differ in scales using invariants. Several such phenomenol-
ogical models follow non BG distributions and Levy statistics.

Phase Transition

Supporters of Tsallis, C. (1988) entropy originally suggested that his form enables describing
phase transitions and characterize them by a parameter q. Phase transitions were being used to
characterize hardness of problems. Thus Tsallis q parameter came to be known as a measure of
complexity; Yamano, T. (2004). According to Occam’s razor
(http://en.wikipedia.org/wiki/Occam%?27s_razor), when alternate explanations are available to
describe a phenomenon, the simpler one that explains all facets involved is to be accepted. Since
Occam’s razor is a non-mathematical statement; it is untenable to accept it as the justification of
Tsallis, C. (1988) entropy as the claimant that describes phase transitions. Phase transitions have
topological origin as investigated by Angelani et al (2004). Thus for a statistical mechanics model
without non-homogenous interactions, it could be unreasonable to accept that Tsallis, C. (1988)
entropy contributes anything of substance over Shannon-Gibbs-Boltzman formulation. In the
same vein Tsallis ‘q’” parameter interpreted as a measure of complexity by Yamano, T. (2004)
becomes questionable. However Occam’s razor; itself is without a proof.
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Topology and Projective Geometry

Kiehn, R. M. (2004) has detailed explanations of non-equilibrium stationary states and entropy
based on thermodynamics, topology and geometry. Thermodynamics is a topological science.
This is clear from a few examples below.

(1) One of the oldest results in topology is that number of vertices and two dimensional faces of a
bounded convex polyhedron exceeds the number of edges by two (Dey, G. & Edelsbrunner, n.d.).
Compare this to the famous Gibb’s phase rule that is often introduced with the memory aid as
below:

Police Force is Chief plus two, where P stands for phases, F stands for degrees of freedom, and C
stands for components.

(2) Thermodynamic varieties such as Free energies and Entropies are independent of path; they
depend only on the end states. In Cartan’s topology and projective geometry, the path goes
around the infinity and returns to another point. Thus the absence of the concept of in-between-
ness is shared by Thermodynamics and projective geometry and topology.

Entropy is an extensive variable. Additivity of extensive variables is a property of projective
transformations: Kiehn, R. M. (2004). Projective geometry is at the upper most level of geometric
generalizations. It has its invariants in the six cross ratios with one functionally independent ratio
k (Show Table of cross ratios and graph). Let us formally define a measure to grasp what additiv-
ity of a projective transformation is: “ A measure on a topological space X is just any function m
from the family of subsets of space X to non-negative real numbers satisfying the property of
countable additivity”: Amenta N., Bern M., Eppstein D., & Teng S. H. (2000), Projective trans-
formations are countably additive. This situation happens to fit perfectly to Boltzmann-Planck’s
choice of logarithm and unfortunately, does not fit at all to Tsallis’s choice of a non-additive de-
formed logarithm. It is clear that in above arguments we first called entropy an extensive variable
and then invoked additivity of extensive variables in projective geometry. This is a circular logic
and hence in reality, entropy is extensive (additive) by axiom. The axiomatization of countable
additivity was the fundamental contribution of Kolmogorov’s measure theory.

Novelty, Generalization and Innovation

In Appendix 1, a somewhat provocative extension of Tsallis generalization defines an entire and
novel new branch of mathematics called “q deformed mathematics” including a “q deformed pro-
jective geometry”. The purpose of this novelty is to demonstrate the connotations of rejecting ad-
ditivity in entropy definition. It shows how easy it is to innovate and generalize to get a q de-
formed world. For example a chemist could obtain q deformed pH of acids and bases using the q
deformed logarithm. Without doing any experiment, we can confidently state that no physical
experiment will validate the q deformed pH measure. We accept countable additivity in the real
world and reject the novelty of all generalizations and innovations like Appendix 1.

However, whatever happens to the complex world? In fine print that we did not state or repro-
duce, Angelani et al (2004) use a complex number in the partition function exponential to derive
phase transition and conventional entropy. However, they forget to address the imaginary part
and it is left dangling in free or phase space, after they had no use remaining for it.

Is it possible that we have states in the partition function that are sums of logical states with com-
plex coefficients?

Can we then define a countable additivity on real and imaginary parts separately? Or at least map
the imaginary part on to real domain and continue using something akin to conventional counta-
bly additive measure?
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Can we use both the available probabilities in the projective geometry, but use one for the real
variable and the other for the imaginary variable? Of course we just innovated another projective
geometry in complex space, and have to radically alter Kolmogorov’s concept of measure telling
us about mappings to positive real numbers to address complex numbers as well. The answer to
first of the above questions is yes. This space is used to define the Qubit in Quantum Computing.
The remaining two questions are also answered yes (may be in a modified form), that must logi-
cally flow from the first yes. All this brings us to a rather hard to answer question, is Tsallis en-
tropy then suited for the job in the Quantum arena? Unfortunately in the above two answers we
already implicitly answered this in the negative. We shall expand on this topic a bit, later in this
work under the heading quantum information theory.

Measure Theory

Measure theory is at the foundation of information science and perhaps most of the science. This
fact is usually not apparent, due to years of schooling in determinism. Probability involves ran-
dom occurrence of events. Two successive events can be independent or dependent on each other
or be a sequence of an exhaustive search process. The dependent events could further be mutually
exclusive or second could relate to the prior one in some other way. Kolmogorov re-enunciated
the laws of probability on a geometric foundation, formally called measure theory. These laws
and current challengers that bring additivity into question are listed below:

The total compound probability of instantiations of events A, B and C of the possible states of the
world is shown in Table 1.

Table 1. The laws of probability

Event type The total probability law

Any two events | P(AUB)=P(A)+A(B)-P(ANB)

Disjoint events As above, but P(ANB)=0.0, Countable additivity

Dependent As above, but P(ANB)=P(A)P(B|A)=P(B)P(A|B), dependence may re-
events late to non additivity
Three events P(AUBUC)=P(A)+A(B)+P(C)-P(ANB)-P(BNC)-P(ANC)+P(ANBNC)

If and only if either P(A) or P(B) is zero then the events are said to be mutually exclusive and
complimentary and the compound probability is additive
(http://mathworld.wolfram.com/Countable AdditivityProbability Axiom.html). If it is not the case
and P(A,B) exists and the compound probability is non-additive. In terms of logic symbolism

{{Pa==0} Y {Pb==0}} < {P is additive}
—{{Pa==0} Y {Pb==0}} < {P is not additive}
P(ANB)=P(A)P(B) if events are independent

When additivity is allowed and used, the belief is evidence. When combination is allowed, belief
is a generalized probability, Halpern & Fagin. (1992). Halpern and Fagin apparently conclude to
leave the decision as to which one to use on domain specialists. Information entropy was derived
in thermodynamics under the assumptions disjoint events, factorizability and a not well-clarified
“ homogeneity “ assumption. These assumptions about events make the compound probability
used in the occurrence of events in thermodynamics additive. Dependent events mean a term that
caters to any interaction between two events must be taken into consideration. Central theme in
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the issue of entropy functional form is the assumption of additive probabilities and independence
of events. It can be easily misconstrued from the Tsallis form that the definition of compound
probability is what Tsallis followed and his work caters to interactions, but that is not so.

Fuchs, C. A. (1995) gives very detailed derivations of the following on Information theoretic and
probabilistic grounds in his thesis:

Error probability quantum and classical;
Fidelity, quantum and classical;

Renyi overlaps, quantum and classical;
Kullback Information, quantum and classical;
Accessible Information, quantum and classical;
Shannon’s entropy.

It becomes clear from derivations reproduced by Fuchs, C. A. (1995), Appendix 2 that his so
called q factor tending to unity needed to develop Shannon’s entropy asymptotically from prob-
ability theory has inspired the Tsallis q factor. However, the effort in the information theory deri-
vations is about finding a true distribution from a host of false distributions and only one of them
is true. That happens to be the one when q factor is at its unity limit. And then it is Shannon-
Boltzmann-Gibbs distribution. In all of Fuchs, C. A. (1995) set of probability based information
theory derivations, the issue of compound probability is not approached with homogeneity & het-
erogeneity or interactions in mind. Thus it is clear that Tsallis entropy definition emanates from
an incomplete derivation of Shannon’s entropy embedded in information theory. And Tsallis
definition, even according to information theory can be true only in the unity limit of the q factor;
there it collapses to Shannon’s definition. Thus we conclude that in fact we have no “new” defini-
tion of entropy that emanates from Information theory.

Quantum information theorists have advocated two further approaches to probability theory due
to its internal debates.

Khrennikov. A. (2005) calls any two quantum measurements as those of vectors. He then uses
law of vector addition to develop a probability law as below (bold face is a vector):

C=A+B;
C.C=(A+B).(A+B)
|C*=|A%+|B%-2|ABCos( 8)|

The last form has been analogously compared to Born’s rule and is used to define a probability
law as: P(C )=P(A)+P(B)-P(ANB)

The cosine term is normalized in some way. When angle between vectors changes quadrants, the
sign of cos term goes positive and use of Euler’s exponential-trignometric relation results in hy-
perbolic cosine in place of cos term. Andrei calls this “hyperbolic representation” of probabilities
and calls all of this work as “contextual probability”, i.e. a euphemism for compound conditional
probability. However such a contrived description is not justified. Remember that the entropy and
probabilities arrived on the scene due to interaction issues and while minimizing thermodynamic
free energy. The interaction term can have either a positive or negative sign, based on energy bal-
ance of the system. Hyperbolic behavior does indeed exist in physically real non-homogeneous
systems. We will visit this by giving physical examples in liquid mixture at a later stage.

Salgado, R. (2002) evolve a new line of thought. Citing failure of additivity for the famous dou-
ble slit experiment, they propose a generalization of classical probability measure and state that a
quantum probability is not additive at two event level and define an interaction non zero term 12
in the compound summand of event probabilities. However from three events (each taken as set
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having sum of the square norms of additive quantities) onwards, they state that quantum mechan-
ics follows normal classical probability law. This has an analogy throwback to Gleason’s theorem
(Caves C., C. Fuchs C., Manne K., Rennes J. (2003) that states quantum measurements for di-
mensions greater than two are feasible, notwithstanding Hiesenberg’s uncertainty principle. But
beyond that, Salgado, Sorkin generalization of measure appears to be artificial and contrived as
well.

Interactions and Theories of Liquid’s

When interactions and heterogeneity are involved there is one true “mixture” distribution that
includes interaction between more than one dis-similar entities participating in the chance. And
there are false “mixture distributions”.

Within the true mixture distribution itself, compound probability must apply and yet the overall
probability has to be bounded by unity. When mixtures shift to pure states, the probabilities
should remain bounded by unity. Since this starts to get confusing, it is time to turn to an area of
science that has had the debates about this ongoing for years. Such discussions are about Entropy
of mixing in liquid’s theory. We of course begin with a clear understanding that science does not
yet understand entropy of mixing very well and we are all still learning.

Liquids, solids, social teamwork, extreme programming pairing, HCI, biological systems, macro-
economy’s are physically the easiest examples of interactions. We shall address quantum entan-
glements as an example at a later stage. This section draws practitioner’s ideas into the world of
Information theorists.

It is known for long that theories of liquids and solids are far from perfect. However, engineers
have had to deal with predictions for liquid systems, even when as we know, basic thermodynam-
ics handled interactions and phase transitions unsatisfactorily. Applied literature on liquids is far
ahead of Information theorist’s literature. Engineers skirted the entropy debate completely and
moved ahead with their work. Let us see how. Liquids theories of applied domain do not intro-
duce the interactions by modifying or using Shannon’s entropy definition, but by separately add-
ing functional terms to the upper level, the system configuration free energy. The entropy as gets
derived from free energy minimization (the principle of least effort in team works) is simply, ac-
cepted.

The interactions can be basically grouped into two categories, those that are homogenous and
those that are not. An excellent example of interactions in biological social systems is a flock of
birds flying in an arrowhead formation. It is now common knowledge that if the birds fly in an
arrowhead, the effect of flapping wings of neighbor reduces energy required to fly and the flock
can take longer flights than individual birds due to this energy minimization. (See Figure 1.)
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Figure 1. A flock of geese flying in an arrowhead V
Retrieved from http://www.loc.gov/rr/scitech/mysteries/geese.html

What Information theorists call as “entropy maximization™ is in reality, not entropy maximization
but “energy minimization”. Social scientists frequently quote this example in collaborative lead-
ership and as a justification for encouraging teamwork and it is perhaps the model example for
collaboration and cooperation in a Multi agent system. The homogenous interactions arise from
topology of a problem and are related to entropy and information loss. Topology and entropy are
intimately linked as shown by Angelani et al (2004). Homogenous interactions can also be multi-
entity interactions and can be categorized again on the basis of number of entities involved in the
interaction. Probability theory incorporates many body interactions as well. For example:

P(AUBUC)=P(A)+A(B)+P(C)-P(ANB)-P(BNC)-P(ANC)+P(ANBNC); if events are pair wise
mutually exclusive, then ternary interaction terms vanish. The transition order and number enti-
ties involved delink themselves for first and second order transitions, however for greater than
second order transition the order and number of entities is linked by Euler characteristics as
shown by Percus, A. G. & Martin, O. (1998).

The non-homogenous interactions are the ones that were introduced as application example in
case of liquids, solids, social team work, terrorism etc. at the beginning. Heterogeneous interac-
tions can be further classified into three categories viz. attractive, neutral and repulsive. The in-
volvement of only two agencies in interactions makes them binary interactions. If the interaction
between two is effected via a third party, then it is a ternary interaction. This is akin to “ k nearest
neighbour ” ideas of Percus, A. G. & Martin, O. (1998). Heterogeneous interactions modify sys-
tem models like the statistical mechanics model. However the manner in which they get intro-
duced into the entropy of the system is very different than homogenous interactions. Though such
interactions also operate with and through the system topology, they are present owing to hetero-
geneity’s own inherent nature and behaviour and specifically not only due to mathematics of the
topological space. Heterogeneous interactions must be configured and added externally to the
system model function and computed and checked separately for their information loss contribu-
tion. The overall picture of interactions is shown in Figure 2.
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Classification of interactions
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Figure 2. Interactions

In agent systems, when multi-goal programming is desired, these interactions can be introduced
as normalized objectives that approach a goal. Two useful points from the theories of liquids are
firstly making goals and variables bounded at both ends and expressing them as scaled variables
within the bounded range as shown below and secondly to normalize the contributions to the
goals so that probabilities add to one, this is a way of ensuring finite additivity instead of a count-
able one and it ensures that proper weights are given to the interactive goals with non interactive
ones.

Scaled Goal = (Unscaled goal — Lower Bound)/(Upper Bound-Lower Bound), similarly for vari-
ables.

The need for this normalization arises because pure liquid specie need to obey additivity and
probabilities must lie between zero and one. However, predicted interactions may some times end
up leaving a residual in the pure liquid state when purified from an initially mixed state or the
other way round. This is very analogous to what quantum information theorists are now finding in
experimental data on pure and mixed states and entanglement distillation. Two molecules of same
liquid may have attractive or repulsive parts, bringing neighbours close or repulsing them leading
to an element of non additivity in the Interactions. This is where compound probability could be
used, but through energy balance; not in any other purely mathematical way.

Let us close this part with two quick examples of liquid systems (Shown in Table 2) that involve
heterogeneous interactions (Gmehling & Onken. (1977) and graph their behaviour.
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Table 2. The deviant liquid mixtures

Mixture Substances involved

1 Acetone (1-1), Chloroform(1-2)

2 Acetone (2-1), Methanol (2-2)

The liquid activity coefficient is a measure of deviation of the mixture from ideal behaviour
where perfect countably additive Boltzmann Gibbs entropy applies. Values greater than unity are
reported for mixture 1, less than unity for mixture two. This graph (Figure 3) shows physical ex-
ample of what is termed hypothetically existent hyperbolic probability law by Khrennikov. A.
(2005). But the mixture specificity of the extent of hyperbolicity indicated by the data says, one
could not state hyperbolic probability law was the causal set for this behaviour, but other complex
system characteristics are. There are voluminous further weird (eg two liquid phases like Kero-
sene-water, azeotropy etc.) and very varied real physical data in the Dechema series gathered in
Gmehling & Onken. (1977).

Deviations from ideal behavior
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Figure 3 The plot of deviant liquid mixtures

The real world is far from ideal and above analogies we made here rather speculatively relying on
Tsallis, C. & Souza A. M. C. (2003). Stability of entropy for superstatistics. Physics Letters A
319, 273-278.

Van der Waals (1894) theories are gradually turning out to be true in quantum domain as found
by Castorina, Riccobene, & Zappala (2005). How are such observations going to be addressed
within quantum information theory?

Quantum Information Theory

It is clear that for Tsallis entropy to be valid, non additivity must be valid. We will look into the
evolution of additivity aspect in Quantum Information theory.
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The Qubit

Quantum information is fundamentally different in character to classical computing information.
Classical computing information is in bits, probabilistic information works in pbits and quantum
information is in qubits. (See Figure 4.)

Bit, pbit and a qubit

North Qubit=1

P/

|

\U}

Blt 0-1 pblt 0-1 lets a|0)+D]1)

a’+b’=1

Figure 4 The bit, pbit and qubit

Visually, the qubits can be shown on a Bloch sphere, where infinitely many values between zero
and one could be taken up, whereas a pbit takes only fractional values on the strip from zero to
one and bit just takes two very limited values, zero and one. Due this fundamental difference in
the representation of information, Shannon’s proof that a communication channel has a well de-
fined information carrying capacity and the formula he gives for it have to be modified.

Significance of Entanglement

The fields of quantum computing, teleportation and cryptography are feasible only because of
what is called quantum entanglement. (See Table 3.) Keyl M. (2002) gives a vivid demonstration
of this.

Table 3 Significance of entanglement

SR NO | QUANTUM OPERATION WITHOUT ENTANGLEMENT WITH ENTANGLEMENT

1 JOINT MEASURING DEVICE (E.G. No YES, WHEN POVM
MOMENTUM, POSITION): AVERAGES ARE
HISENBERG'’S PRINCIPLE USED; VIOLATION OF

BELL INEQUALITIES,

2 QUANTUM CLONING OR COPYING 11s No HENCE NoO YES, BECAUSE 1 1S YES

3 TELEPORTATION 11s NO HENCE NO YES, BECAUSE 1S YES

4 DENSE CODING 11s NO HENCE NO YES, BECAUSE 1S YES

5 ERROR CORRECTION 1,2,3,4 NO HENCE NO YES, BECAUSE 1S YES

Measurement of State

More correct statement of Hisenberg’s principle is that velocity and momentum cannot be projec-
tively measured together. By Gleason’s theorem (Caves C., C. Fuchs C., Manne K., Rennes J.
(2003) and Born’s rule, measurements of quantum variables are possible on Hilbert spaces of di-
mension greater than two. This measurement is usually made as a positive operator valued meas-
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urement (POVM). Those who utilize quantum computing usually resort to its operational vision.
That is:

1 Probability is interpreted in a Bayesian manner; in a non-contextual fashion. Frequency
interpretation is not used.

2 There is no attempt to insist on mixed state being convex as were the pure states;

There is no attempt made to defend use of many world’s interpretation of quantum mechanics
that is involved. The wave function collapse issue in this approach is handled by making the ob-
server a part of the superposition of states. The state vector is objective and inclusion of observer
keeps the whole system objective as far as probabilities are concerned. Though objective, the
measurement cannot say what was measured or the outcome in each branch of the many worlds.
This is an instance of the axiom of choice (http://en.wikipedia.org/wiki/Axiom_of choice).

Distinguishability
To use the quantum information one must be able to distinguish between two different states of it.

This can only be done by statistical comparison of distributions of measurement results. Thus
methods as tabulated in Table 4 are needed.

Table 4 The measures of distinguishability

Meas- For Probability Distributions For Quantum states
ures of
distin-
guisha-
bility

Prob- n n
ability P, = Zmin {7 Py (b), 7, p, (D)} Pe(po|p1) :n%hiHZmin{Z'Otr(poEb ),7tr(oEy)}
b=1 b=l

of error

Relative

i N Po (b) \ tr(poEy)
informa- | K(p,/p,)=) p (b)ln( K(p,/ p;) =max ) tr(p,E,)In| ———=
tion o bzz:‘ ’ p, (b) v B ; o tr(p,Ep)
Renyi

overlaps | F,(Py/ P;) = Z P, (D)* p, ()" F.(o0/p)= II%inZ(tr(po E,)*(tr(p, Eb))l_a
b=1 b=l

Fidelity

Foe(Py/ D)= S AR OVR®) | Fosloy/p) =min Y ir(p ) ir(o )
b=1 b b=

Mutual | =H(z, p, +7, p,)—7,H(p,) - H(p,)

informa-
tion

Acces-
. n [tr(po E,)
sible | =ma tr(p,E )Inl ———= [+
(2% |p1) K Xg(ﬂo (poEy) tr(cE, )

informa-
tion

tr<plEb)J )

+ 7z tr(pE, )1
mtr(pEy) n(tr(pEb)
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The accessible information is bounded above and below. The upper bound of accessible informa-
tion is the Holevo bound. Accessible information is limited by Von Neumann entropy. It equals
Shannon’s entropy only when the qubits are orthogonal in the quantum state space; for non-
orthogonal qubits, it is less than Shannon’s entropy. Both Von Neumann and Shannon entropies
are additive.

It is clear from Table 3 Significance of entanglement that entanglement is what enables quantum
computing, teleportation, dense coding, error correction and cryptography. It is necessary to have
a measure of entanglement to assess if entanglement in a certain system is sufficient for a given
task. Qualities expected of an ideal entanglement measure are introduced through a series of axi-
oms below.

Axioms and Additivity

To quantify entanglement is to associate a positive real number to each state of finite dimensional
bipartite system. This is an axiom A0 and has obvious connection to measure defined by Amenta
N., Bern M., Eppstein D., & Teng S. H. (2000) and measure as in functional analysis and that of
Kolmogorov. (See Table 5)

Table 5 The axioms of quantum information theory

Axiom Quantum Information theory Measure theory

Al Entanglement vanishes on separable and takes a
maximum on maximally entangled states.

A2 measure of entanglement has to be monotonic i.e. Measure be monotonic
cannot increase under Local operations and classical
two way communications.

A2a The measure be invariant under local unitaries. Do

A3 a convex function a convex function

A4 It is continuous 1t is continuous

A5 Additive Additive

Sa Sub additive

5b Weak additivity

Sc a regularization exists for it Daubechies I. & Klauder | a regularization exists Wiener,
J.R. (1985). N. (1923)

Table 6 shows status of all entanglement measures currently around in the literature vis-a-vis axi-
oms A0-5. Y stands for valid, X for not valid and ? for unproven.

Table 6 Measures of entanglement vis-a-vis axioms

Ao Ar A As Ar As Asa Asp

Ep Entanglement of distillation Y Y Y ? ? X Y Y
Ec Entanglement cost Y Y Y ? ? ? ? Y
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Er
Er

Entanglement of formation

Relative entropy of entanglement

Y Y Y Y Y
Y Y Y Y Y

It is clear that additivity A5 is not explicitly listed as a proven.

A Holevo channel can be defined using Von Neumann entropy functional. Maximizing the
Holevo capacity over all probabilistic ensembles of a set of quantum states gives the information
carrying capacity of that set of quantum states. When inputs entangled between different channel
uses are allowed, the question of additivity arises. The additivity issues presented in various en-
tries in Tables 4, 5 & 6 in several different forms, have been shown to be equivalent by Shor, P.

W. (2003).

Equivalence of additivity questions in Quantum Information

Super-additivity of
entanglement of

Theory

>

formation.............. (iv)
Additivity of
entanglement of
formation.............. (i)

A

Additivity of Holevo

capacity

Additivity of contrained
Holevo channel

Additivity of minimum
entropy output of a
quantum channel...(i)

Statement equalities (i1)=(1), (ii)=(iii), (ii))=(iv), (iv)=(iii), ()=(ii), (ii1)=(1), (iv)=(1), (iv)=(i1),
(v)=(ii), (v)=(iv) and (iv)=(v) have been proven so far. If any one of the statements is true, all five
are true. That makes them all tautologies. Interestingly, Table 5 shows sub-additivity of the en-
tanglement of formation and only the entanglement of distillation to be non-additive. Other three

Figure 5 Tautologies of Additivity

measures are conjectured to be additive, but not proven.
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Interaction and Entanglement

It is clear from liquids theory that for interacting systems, the entropy may not be additive. A
normalization step that is specific to the system concerned is then needed to ensure that probabili-
ties add up to unity. In case of quantum entanglement, the situation could be claimed to be differ-
ent. But is it? Do we have extensive data on many qubit systems? The interaction here is between
subsystems in the phase plane rather than between two different interacting participants. This
means the entropies can potentially be thought to form from incomplete q deformation that tends
to unity to eventually recover the Von Neumann entropy and obey Holevo bound.

This somehow suggests non additivity is valid in quantum domain. This has been the justification
for those staking claims that Tsallis entropy is valid in quantum mechanics domain. However, as
we have seen already the additivity is axiomatic. Extensive numerical search has thus far sup-
ported additivity axiom Hayashi, H., Maysumoto, K., Ruskai. M. B. et al. (2004). Perhaps the
key to this is energy balance in the quantum domain. Where do the interactions between fermions
and bosons fall i.e. to the right or to the left side of the interactions picture showed before?

Conclusion

No experimentation is yet documented in support of Tsallis entropy in the pure science domain.
Frank, T. D. & Friedrich, R. (2004). have suggested one experiment. Interactions and their impact
should be explicitly introduced into the system and analyzed. Entropy in non-homogeneous sys-
tems is not additive. Theorizations in quantum information theory are still based on few qubits. It
is not clear what will be the impact of many body interactions on theories. Based on Cartan’s to-
pology, measure theory and projective geometry, for non-interacting and homogeneous reversible
or irreversible continuous systems, the entropy form of Shannon-Gibbs-Boltzmann is the correct
form.

In quantum information theory, the additivity issue is unresolved but Kolmogorov’s measure the-
ory is philosophically clear that non additivity means non measurable sets and any theory without
additivity is simply not admissible. In function spaces unless small infinitesimal increment is “yet
finitely non zero, quantized... discrete; infinities are regularized away, continuity and countable
additivity hold”, not all integrals that have non zero answers can be worked out.

In the non-interacting as well as interacting processes, functionally more important than the form
of entropy is the concept of information loss (free energy) minimization. Form follows function.

References

Abe S. & Suzuki N. (2003) Gutenberg Richter Law for Internetquakes, Physica A, 319, 552-556. Retrieved
1 September 2005 from http:/www.loc.gov/rr/scitech/mysteries/geese.html

Abe S. (2004 June 15). Stability analysis of generalized entropies and g-exponential distributions. Physica
D, 193(1-4), 84-89.

Abe S. (2004 December). Quantum g-divergence. Physica A , 344, 359-365.

Abe S. & Okamoto Y. (Eds). (2001). Nonextensive statistical mechanics and its applications. Berlin, Hei-
delberg: Spinger Verlag.

AIChE CCPS. (2000). Guidelines for chemical process quantitative risk analysis (2™ ed.). AIChE, The
Center for Chemical Process Safety.

Amenta N., Bern M., Eppstein D., & Teng S. H. (2000). Regression depths and center point, discrete and
computational geometry 23:305-323. Retrieved 1 September 2005 from
http://math.stanford.edu/comptop/references/abet.pdf

595



Entropy: Form Follows Function

Angelani L., Casetti L., Pettini M., Ruocco G., & Zamponi F. (2004). Topology and phase transitions: from
an exactly solvable model to a relation between topology and thermodynamics. Retrieved 1 September
2005 from http://arxiv.org/pdf/cond-mat/0406760 v1 30 June

Balasubramanian, V. (1996). Geometric formulation of Occam’s razor for inference of parametric distribu-
tions, Available at http://arxiv.org/adap-org/PS cache/9601/9601001.pdf v1 8 Jan [Accessed 1 Sep
05]

Boswell, C. & Glasser, M. L. (2005). solvable sextic equations; Available at
http://arxiv.org/PS_cachee/math-ph/pdf/0504/0504001.pdf v1, 1 Apr [Accessed 1 Sep 05]

Boyden III, E. S. (1999). Quantum computation: theory and implementation. (BS physics, BS Electrical
engineering and computer science, MS Electrical engineering and computer science multiple degree
thesis, pp 15 of 181, MIT, 7 May. Available at
http://www.media.mit.edu/physics/publications/theses/99.05.esb.pdf [Accessed 1 Sep 05]

Castorina, Riccobene, & Zappala (2005). Non commutative dynamics and roton like spectra of bosonic and
fermionic and condensates. Physics letters A 337, 437-468.

Caves C., C. Fuchs C., Manne K., Rennes J. (2003). Gleason type derivations of the quantum probability
rule for generalized measurements available at http://arxiv.org/abs/quant-ph/0306179 v1 26 Jun [Ac-
cessed 1 Sep 05].

Cheeseman, P. & Kanefsky, T. (1991). Where the hard problems really are. Proceedings of the 12" interna-
tional joint conference on Artificial Intelligence IJCAI-91, Vol 1, pp 331-337, Morgan Kaufmann

Cheney, W. & Kincaid, D. (1985). Numerical mathematics and computing.

Daubechies 1. & Klauder J. R. (1985). Quantum mechanical path integrals with Wiener measures for all
polynomial Hamiltonians. Journal of Mathematics and Physics, 26, 2239-2256.

Dey, G. & Edelsbrunner. (n.d.). Computational Topology available at
http://citeseer.ist.psu.edu/cache/papers/cs/128/http:zSzzSzwww.ics.uci.eduzSz~eppsteinzSzginazSzDe
yEdelsbrunnerGuha.pdf/dey99computational.pdf [Accessed 1 Sep 05]

Devetak 1., & Staples A. E. (2004). Towards a unification of physics and information theory. Available at
http://arxiv.org/PS_cache/quant-ph/pdf/0112/0112166.pdf v5, 3 April [Accessed 1 Sep 05]

Frank, T. D. & Friedrich, R. (2004). Estimating the nonextensivity of systems from experimental data: a
nonlinear diffusion equation approach. Physica A.

Fuchs, C. A. (1995). Distinguishability and accessible information in quantum theory, doctoral dissertation,
University of New Mexico, Albuquerque, Dec pp 44 of 174
http://arxiv.org/pdf/quant ph/9601020[Accessed 1 Sep 05]

Fuchs, C. A. (1996), Distingusihability and accessible information in quantum theory; PhD Dissertation
available at http://arxiv.org/pdf/quant ph/9601020 v1, 23 Jan [Accessed 1 Sep 05]

Gell-Mann, M. & Tsallis (Eds). (2004). Non extensive entropy: interdisciplinary applications. New York:
Oxford University Press.

Gerhard Knieper. (1995). Volume growth, entropy and the geodesic stretch. Mathematical Research Let-
ters, 2, 39-58

Gmehling & Onken. (1977). Vapour liquid equilibrium data collection. DECHEMA Chemistry Data Series,
vol ,1 (parts 1-10), Frankfurt.

Gross, D. H. E. (2004), Classical equilibrium thermo-statistics, “Sancta sanctorum of statistical mechanics
from nuclei to stars.” Physica A 340, 76-84

Gupta, R. & Kundu. (2003). Discriminating between Weibull and generalized exponential distributions.
Computational Statistics and DataAanalysis, 43, 179-196

596



Sambasivam & Bodas

Halpern & Fagin. (1992). Two views of belief: belief as generalized probability and belief as evidence. In
Halpern & Fagin, Artifical Intelligence 54, 275-317 available at

http://www.almaden.ibm.com/cs/people/fagin/ai92.pdf [Accessed 1 Sep 05]
Hayashi, H., Maysumoto, K., Ruskai. M. B. et al. (2004). Qubit channels which require four inputs to

achieve capacity: implications for additivity conjectures. Available at http://arxiv.org/PS_cache/quant-
ph/pdf/0403/0403176.pdf v2 26 Aug [Accessed 1 Sep 05]

Kaniadakis, Lissia, & Scarfone. (2004). Two parameter deformations of logarithm, exponential and en-
tropy: a consistent framework for statistical mechanics. Available at http://arxiv.org/pdf/cond-
mat/0409683 v1 26 Sept [Accessed 1 Sep 05]

Ke Xu & Wei Li (2000). The SAT phase transition, National laboratory of Software Development Envi-
ronment; NNSF Grant 69433030. Available at
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume12/xu00a.pdf [Accessed 1 Sep 05]

Keyl M. (2002) Fundamentals of quantum information theory. Physics Reports 369, 431-538. Retrieved
from www.elsevier.com/locate/phyreps

Khrennikov. A. (2005). Reconstruction of quantum theory on the basis of the formula of total probability.
Available at http://arxiv.org/PS-cache/pdf/quant-ph/0302/0302194 v4 24 Mar [Accessed 1 Sep 05]

Kiehn, R. M. (2004). Entropy production and irreversible processes —from the perspective of continuous
topological evolution. Available at mdpi.org, Entropy, 6, 262-292
http://www.mdpi.org/entropy/papers/e6030262.pdf [Accessed on 1Sep 05]

Kiehn, R. M. (2005). Non equilibrium systems and irreversible processes, adventures in applied topology,
Vol 1, non equilibrium thermodynamics from the perspective of continuous topological evolution.
[Self published].

Kiehn, R. M. (n.d.), Point set topology. Available at Cartan’s corner
http://www22.pair.com/csdc/car/carhomep.htm[Accessed 1 Sep 05]

Kojadinovic, 1., Marichal, J. L., & Roubens, M. (2005). An axiomatic approach to the definition of the en-
tropy of discrete Choquet capacity. Information Sciences, 172, 131-153.

Lee, C. F. & Wolpert, D. (2004). Product distribution theory for control of multi-agent systems,
AAMASO4, July 19-23, 2004, New York. Available at
http://www.aamas2004.org/proceedings/065_leec_product distribution.pdf [Accessed 1 Sep 05]

Liau, C. J. (2002). A modal logic framework for multi agent belief fusion. Available at
http://arxiv.org/pdf/cs.A1/0201020 v1, 23 Jan, section 5.3 of the article [Accessed 1 Sep 05]

Lovejoy, S. & Schertzer, D. (2004). Space time complexity and multi fractal predictability. Physica A 338,
73-186.

Monasson, R., Zecchina, S., Kirkpatrick, B., Selman, L. & Troyansky. (1999). Determining computational
complexity from characteristic phase transitions, Nature, 400, 133-137. Available at
http://www.lIpt.ens.fr/~monasson/Articles/a25.pdf.gz

Percus, A. G. & Martin, O. (1998). Scaling universalities of kth-nearest neighbour distances on closed
manifolds. Available at http://arxiv.org/pdf/math.DG/9802117 v1 25 Feb [Accessed 1 Sep 05]

Salgado, R. (2002). Some identities for the quantum measure and its generalizations. Available at
http://arxiv.org/pdf/gr-qc/9903015 v2 14 Jun [Accessed 1 Sep 05]

Saul L. K., Jaakkola T., & Jordan M. 1. (1996). Mean field theory for sigmoidal belief networks. Journal of
Artificial Intelligence Research, 4, 61-76 available at http://www-
2.cs.cmu.edu/afs/cs/project/jair/pub/volumed/saul96a.pdf [Accessed 1 Sep 05]

Shor, P. W. (2003). Equivalence of additivity questions in quantum information theory. Available at
http://arxiv.org/pdf/quant-ph/0305035 v4 3 Jul [Accessed 1 Sep 05]

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Stat Physics, 52, 479.

597



Entropy: Form Follows Function

Tsallis, Baldovin, & Schulze. (2003). Non standard entropy production in the standard map. Physica A,
320, 184-192.

Tsallis C., Lambert P. W., & Prato D. (2001). A non extensive critical phenomenon scenario for quantum
entanglement. Physica A, 295, 158-171.

Tsallis C., Plastino, & Zhang. (1997). Power law sensitivity to initial conditions — new entropic representa-
tion. Chaos, Solitons and Fractals, 8(6), 885-891.

Tsallis, Rapisarda, Baranger, & Latora. (2000). The rate of entropy increase at the edge of chaos. Physics
Letters A, 273, 97-103

Tsallis, C. & Souza A. M. C. (2003). Stability of entropy for superstatistics. Physics Letters A 319, 273-
278.

Van der Waals Diderik Johannes (1894) Z. Phys. Chem. Vol 13, 716
Wali, K. C. (1991). Chandra: A biography of S. Chandrasekhar. Chicago: University of Chicago Press.

West, B. J. (2004). Comments on the renormalization group, scaling and measures of complexity. Chaos,
Solitons and Fractals, 20, 33-144.

Westerberg, Hutchison, Motard, & Winter. (1985). Process flowsheeting, (pp. 36-42). Cambridge Univer-
sity Press, reprint.

Wiener, N. (1923). Differential space. Journal of Mathematics and Physics, 2, 131-174.

Williamson, J. (1999). Countable additivity and subjective probability, March22, available at
http://citeseer.ist.psu.edu/cache/papers/cs/28876/http:zSzzSzwww .kcl.ac.ukzSzipzSzjonwilliamsonzSz
1999zSzpai_jw_99 a.pdf/williamson99countable.pdf [Accessed 1 Sep 05]

Wolpert, D. (2003). Product distribution field theory. Available at http://arxiv.org/pdf/cond-mat/0307630
v1 25 Jul [Accessed 1 Sep 05]

Wolpert, D. (2004). Information theory — The bridge connecting bounded rationality game theory and sta-
tistical physics. http://arxiv.org/pdf/cond-mat/0402508 v1 19 Feb [Accessed 1 Sep 05]

Yamano, T. (2004). A statistical measure of complexity with nonextensive entropy, Physica A 340, 131-
137.

Zhang. (2004). Phase transitions and backbones of the asymmetric travelling salesman problem. Journal of
Artificial Intelligence Research, 21, 471-497, available at http://www-
2.cs.cmu.edu/afs/cs/project/jair/pub/volume2 1/zhang04b.pdf [Accessed 1 Sep 05]

Appendix 1

The q deformed logarithm and its inverse function are defined as below:
Lny(x)=(x"9-1)/(1-q); Inverse e, =(1+(1-q)x)""¥, when 1+(1-q)x >0 and e,=0, otherwise.
Tsallis entropy is Sq=Sum up [ piLng(1/pi) ]

In order to introduce the q generalization into the mean field theory, an entire branch called “q
deformed mathematics” needs to be evolved on following mathematical functional lines:

0, A-if i0

The q Trignometric functions: Cosq@ =3 9 Sinqe -4 "
2

21

A q Complex number: 7 = re(‘f’ =r(Cos,0 +iSin 0)

. [ v1an—xAy.
A q gamma function: T, = IX e, dx;n>0
0
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k 2k
A q Bessel function: J , (X) = ( ) z%
k=0 p+

It is clear that “q generalized projective geometry” will result from the q generalized sin functions
above introduced into Pascal’s Hexagram
(http://www.mathpages.com/home/kmath543/kmath543.htm). These q generalizations fall back to
their respective standard mathematical counterpart functions as q tends to unity.

when p is an integer.

These functions follow standard Lemma as applicable to such functions.

Appendix 2

This appendix lists the probable source of Tsallis’s inspiration in evolving his formula listed in
Appendix 1. Predictably, it is the derivation of the entropy based on information theory. We will
not reproduce the derivation that has been reproduced in many theses. e. g. Fuchs, C. A. (1996),

Boyden III, E. S. (1999). but display two of its key steps and state that this derivation is not com-
plete unless the unity limit of q factor of Tsallis is taken.

H(p(x) =2 -1~ {Zn: o —1}

LUIH(pO)]= LL[( (2™ - _l{zp. }

H(p) == P(X)Lg,(P(x))

Then we have no new entropy other than that of Boltzmann-Gibbs-Von Neuman. Incomplete
derivation, when limit is not taken cannot make a new definition. Neither is this incompleteness
very Goedelian nor is it any improvement over Prigogine who talked about self-organized multi-
ple stationary states far from equilibrium (Forman Robin’s home page How many equilibria are

there: An introduction to Morse Theory, available at http://math.rice.edu/~forman/.).
The historical root cause of the problem is neither Herr Planck nor Herr Boltzmann justified their
choice of logarithm by a derivation. A logarithm links topological volume to additivity making it
a true measure. Choice of form follows the functional need, and did not need a derivation. Shan-
non’s work is chronologically latest, prior to that is Von Neuman’s quantum mechanics based
definition. Boltzmann Planck’s work was the earliest. The definition of entropy is about topologi-
cal volume growth, not about statistics or distributions.

Biographies

Dr Samuel Sambasivam is the Chairman of the Department of Com-
puter Science of Azusa Pacific University. Professor Sambasivam has
done extensive research, publications, and presentations in both com-
puter science and mathematics. His research interests include optimisa-
tion methods, expert systems, fuzzy logic, client/server, Databases and
genetic algorithms. He has taught computer science and mathematics
courses for over 24 years. Professor Sambasivam has run the regional
Association of Computing Machinery (ACM) Programming Contest

599



Entropy: Form Follows Function

for six years. He has developed and introduced several new courses for computer science majors.
Prof Sambasivam teaches Database Management Systems, Information Structures, and Algorithm
Design, Microcomputer Programming with C++, Discrete Structures, Client/Server Applications,
Advanced Database Applications, Applied Artificial Intelligence, JAVA and other courses. Pro-
fessor Sambasivam coordinates the Client/Server Technology.

Vijay D. Bodas is Technical Services Manager with Sud-chemie AG’s Bahrain office. He has a
well-diversified background as a Professional Engineer registered in the state of Oregon, USA
and a member of the Chartered Institute of Management Accountants. His work background in-
cludes multi-country exposure to construction and start up of grass roots chemical production fa-
cilities, process engineering, process control and systems engineering, process safety, hazard and
risk management and strategic business evaluations in chemical manufacturing sector. The work
here is continuation of the work carried out towards partial fulfilment of MS (IT) requirements of
the University of Liverpool.

600



