
Issues in Informing Science and Information Technology Volume 4, 2007

PersistF: A Transparent Persistence Framework
with Architecture Applying Design Patterns

Samir Jusic and Lee Sai Peck

Faculty of Computer Science and Information Technology
University Malaya, Kuala Lumpur, Malaysia

samir@alcassoft.com saipeck@um.edu.my

Abstract
Persistence is the term used in computer science to describe a capability to store data structures in
non-volatile storage such as a file system or a relational database (Wikipedia, 2003). There is a
growing need to simplify the interactions among separate systems and to build complex software
systems that are made out of components with well-defined services. At the base-level of such
complex systems lies a persistence framework – a set of classes tailored to save, retrieve, update
and delete objects to and from their persistence stores, such as databases and flat files. This paper
presents the design, and implementation of the transparent persistence framework called PersistF.

Design patterns (Gamma, Helm, Johnson, & Vlissides, 1995) have been widely accepted in the
software engineering community as the recommended approach to developing software. Part of
the research effort of this work included the application of well-known design patterns in order to
build the framework. We present how consistent application of design patterns allowed us to
build a fully working persistence framework.

In order to support development of modern complex applications, some recent application devel-
opment environments for different programming languages are built in with some kind of persis-
tence framework. To use these frameworks in target applications, the developer often must go
through a steep learning curve as each framework is specific in some way, but namely in respect
of configuring the framework’s runtime engine with enough information about the domain appli-
cation. This configuration is often time consuming and error prone. Most of the existing frame-
works require complicated configuration steps that are imposed onto the developer. Our aim with
this work was to present a framework that will not require such complicated configuration steps
and would provide its service to the target application with virtually no configuration of the
framework's handling of domain classes.

Keywords: transparent persistence framework, design patterns, Java, relational to object model
mapping

Introduction
As computing power increases, the
number and variations of software ap-
plications built seem to have no end in
sight. For a very large percentage of ob-
ject-oriented applications, there is a con-
stant need to store and retrieve applica-
tion data. Without a doubt, the most
popular storage mechanism is a rela-
tional database. However, the applica-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

PersistF

768

tions have to deal with the problem that arises due to the fact that objects (in the object-oriented
world) are conceptually different in their structure and semantics from relational databases. In
order to save objects in relational databases, there must be a mapping between the two domains.
This mapping is often not natural and is described as the impedance mismatch (Ambler, 2002).
The fundamental problem between the object-oriented world and the relational databases as the
storage mechanism used is often referred to as the impedance mismatch. The object-oriented
paradigm is based on proven software engineering principles, whereas the relational paradigm is
based on proven mathematical principles. Because the underlying paradigms are different, the
two technologies do not work together seamlessly (Ambler, 2002, 2000). To address this prob-
lem, a persistence framework is introduced to seamlessly provide the necessary mapping between
the two worlds or paradigms.

There are a number of persistence frameworks available in the industry and academia to bridge
the gap between object-oriented applications and relational database management systems
(RDBMs). However, these frameworks are usually targeted to handle storage into relational data-
bases and have little or no support for other persistence types, such as object-oriented databases
and XML files. In addition, working with a persistence framework is rarely simple as it requires
fairly complicated configuration to be done by the application developer before being able to use
it.

The persistence framework described in this paper has the following goals:

• Provide transparent persistence (little or no intrusion into the application code).
• Support multiple persistence mechanism types, including relational databases, object-

oriented databases and XML files.
• Be simple to use with little configuration required.

This paper describes the architecture and design of a transparent persistence framework called
PersistF (Persistence Framework). PersistF addresses the inherent complexity of using a persis-
tence framework by minimizing the required configuration that needs to be done by the applica-
tion developer. In addition, if at all needed, it has a very minimal intrusion of its own code into
the target application code, therefore being transparent to the developer. Finally, the system sup-
ports multiple persistence mechanism types, including relational databases, object-oriented data-
bases and XML files for storage. In this paper, we focus on the application of software design
patterns in the architecture of PersistF.

The remainder of this paper is organized as follows. Section 2 presents a brief overview of the
major persistence frameworks currently available. Section 3 describes the features of PersistF.
Section 4 describes the architecture and design of the framework as well as the application of de-
sign patterns in its implementation. In Section 5 some experiences in using the framework to
build a web-based application are presented. Lastly, Section 6 summarizes our work and provides
an outline for future work.

Related Work
The issue of object storage is a highly debated one. There are quite a number of research projects
and commercial tools available in the market and on the Internet. A brief overview of the most
popular tools is presented below. The list, however, is not an exhaustive one.

JDO – Java Data Objects
The Java Data Objects (JDO) (Russell, 2003) API is a Java model’s standard interface-based ab-
straction of persistence. JDO technology can be used to directly store Java domain model’s in-
stances into the persistent store (database). Developed under the Java Community Process (Java

 Jusic & Lee

 769

Community Process, 2004), JDO has great momentum in the development community. It pro-
vides transparent persistence through the use of post-compilation of Java class files to add addi-
tional interfaces to compiled Java classes (byte-code manipulation).

Hibernate
Hibernate (King & Bauer, 2003) is a powerful, high performance object-relational persistence and
query service for Java. Hibernate rejects the use of build-time code generation / bytecode process-
ing. Instead, reflection and runtime bytecode generation are used and SQL generation occurs at
system startup time. Hibernate has surfaced as one of the main persistence engines for Java. Its
support has been lately boosted further by the acceptance of Hibernate into JBoss (JBoss, 2004).
Widespread usage among Java community is already present.

Java Persistence API - JSR 220
The Java Persistence API (SUN Microsystems, 2006) originated as part of the work of the JSR
220 Expert Group to simplify EJB CMP entity beans. The Java Persistence API is not based on
any single existing persistence framework but incorporates--and improves upon--ideas contrib-
uted by many popular frameworks, including Hibernate, TopLink, JDO, and others.

• The Java Persistence API is a POJO (Plain Old Java Objects) persistence API for object-
relational mapping.

• It contains a full object-relational mapping specification supporting the use of Java lan-
guage metadata annotations and/or XML descriptors to define the mapping between Java
objects and a relational database.

• It supports a rich, SQL-like query language.
• It also supports the use of pluggable persistence providers.

Castor
Castor (Castor, 2004) is an open source data-binding framework for Java. Castor aims to provide
transparent persistence service for relational databases and XML files. It is a collection of ad-
vanced mapping frameworks, which allows Java objects to be transformed to and from XML
elements and relational database content.

Summary Remarks
The above-mentioned frameworks and APIs have a common trait: they all require the end user
(developer) to configure the framework’s behavior by providing enough information about the
target application and the way in which persistence aspects of it are to be handled in the context
of a given framework. This decreases the overall productivity for the developer and complicates
the development process by forcing the developer to learn the lingo of the target framework.
Their approaches to accomplishing persistence differs, as well as the features that the frameworks
support, but they all require additional steps in the form of configuration of the framework to get
any actual persistence work done. Hibernate is currently the most popular open source framework
found in the industry. However, it appears that JSR 220 specification may soon become the leader
(partly due to the fact that Hibernate creator, Gavin King, has actively joined the JSR-220 speci-
fication team).

PersistF: A Persistence Framework Overview
The detailed design and functionality of PersistF is discussed in the following sections. First, an
overview of all the supported functionality is provided followed by the discussion on the frame-

PersistF

770

work’s design choices. The functionality provided by the framework is grouped into: (1) provi-
sions for transparent persistence, (2) support for user-defined classes and relationships between
them, and (3) support for different persistence mechanisms.

Transparency
With transparency, the framework takes care of all the persistence-related work on behalf of the
user. The management of unique identifiers, the retrieval of objects from the data store, materiali-
zation of objects from the specific data store is done automatically. There is a minimal amount of
persistence-related code that is propagated at the application level. The domain level (i.e. defini-
tion of business classes) is untouched by the framework code footprint.

Support for User-defined Classes and Configuration
The framework does not require any prior knowledge about the domain in which it is supposed to
be used. With the use of Java’s reflection mechanisms, the framework dynamically inspects and
creates the necessary mappings between the object and target persistence mechanism. This ap-
proach not only eliminates the need for users to dedicate time and resources to the development
of tedious persistence-related code, but also enables them to fully focus on the domain develop-
ment.

Where PersistF differs from more popular frameworks, such as Hibernate (King & Bauer, 2003),
is in its innovative configuration-free setup. PersistF dynamically discovers the properties of
classes and is able to provide the mapping into the persistence store without requiring explicit
(and complicated) configuration often found in other frameworks. Our current work requires the
developer to register domain classes which are to be handled by the framework. There is no need
to provide mapping information in the form of configuration files for each field and where it is
supposed to be stored.

Figure 1: Framework Mapping Strategies

Figure 1 depicts the most important classes which collaborate to perform class mapping function-
ality. Mapping of user-defined (and all other) classes is done through the use of ClassMap in-

 Jusic & Lee

 771

stances which basically capture the class structure – name and its related fields. Each field has a
ColumnMap instance that captures the way in which a field can be mapped to a persistence stor-
age. Mapper class actually performs the logic behind doing the various persistence tasks such as
extracting values and building the necessary SQL statements based on the structure of the Class-
Map. There is a dedicated ClassMap for each user-defined class. Whenever a typical application
starts it will attempt to initialize PersistF. Initialization of PersistF will load all available meta-
data mapping with the help of a singleton MappingManager instance. MappingManager stores all
of the individual Mapper classes. Other parts of the framework will use the MappingManager to
obtain the required Mapper and ClassMap classes. Operations of loading, saving and deleting ob-
jects require the MappingManager to obtain the ClassMap and Mapper instances according to the
target Java class and forward the task to them.

Multiple Persistence Mechanism Types
PersistF is built around the concept of working with multiple persistence mechanism types. As a
starting point, the framework supports relational databases and XML-based documents as persis-
tence stores. Support for additional storage mechanisms is achieved by extending the framework
at well-defined customization points. Customization takes the form of implementing interfaces
which will be automatically called by the framework once they are plugged into it. Our aim is to
have support for object-oriented databases in the near future.

Architectural Design of PersistF
The design of PersistF is based upon layers (Buschmann, Meunier, Rohnert, Sommerlad, & Stal,
1996). The major framework layers are depicted in Figure 2.

Figure 2: Architectural Layers of PersistF

Each of the three layers contains additional classes that perform functionalities pertaining to that
level.

Persistence Framework Layer serves as the framework’s API for the user’s end applications. It
provides the classes that should be directly used from or communicated to target applications
such as Session and PersistenceServer.

Persistence Mechanism Layer provides the infrastructure to connect to different storage mecha-
nisms – for example, relational databases and flat files.

Mapping Layer provides the necessary mapping mechanism between the in-memory native object
representation of the data and the target storage mechanism representation. Classes in this layer
are tailored for different storage mechanisms to provide the specific implementation to them.

Persistence Framework Layer
Persistence Framework Layer is the primary contact point to the end-user’s application. This
layer contains the Session, Transaction, and PersistenceServer classes as the primary set of
classes which the application must use to get persistence work done. Classes in this layer are ex-
posed to external applications which make use of them to accomplish persistence tasks.

PersistF

772

Figure 3: Persistence Framework Layer Classes of PersistF

The framework exports the Session component which has the central role of performing object
lookup, creation and storing from a given data store. ITransaction and Session classes allow client
applications to create units of work in the context of persistence. Sessions are obtained from the
SessionFactory, and Transactions are created on demand from a given Session instance. Figure 3
illustrates the core classes found in the persistence framework layer as well as the connections to
the most important classes beyond that (namely the Persister which is used to perform persistent
store-related detailed operation as well as MappingManager and Mapper which are responsible
with maintaining the mapping information of domain classes to their storage).

Persistence Mechanism Layer
Persistence Mechanism Layer provides the functionality related to connecting to a given persis-
tence mechanism. This layer supports connection to the relational databases and flat-file (XML)
files.

Future extensions in this layer would allow the addition of new persistence storage types (LDAP,
e-mails) through subclassing of PersistenceMechanism class. Naturally, to support completely
new persistence types, there is a need to not only subclass classes in this layer but also in other
affected layers, as appropriate.

 Jusic & Lee

 773

Figure 4: Persistence Mechanism Layer Classes of PersistF

The sample implementation of the framework focused on the relational databases. The necessary
customization, hook and concrete implementation classes were built with the idea of a relational
database as the target storage. Figure 4 illustrates persistence mechanism layer of PersistF.

The layer is designed to support extensions to the types of storage through the implementation of
interfaces that abstract the actual storage type. By implementing interfaces in different layer’s
packages, it is possible to provide implementation classes that will be able to store data into new
and yet unsupported data stores. This provides great flexibility to the end-user as they would not
be tied to a particular type of storage.

Each concrete implementation of IPersister interface interacts with a concrete sub-class of the
PersistenceMechanism in order to perform the actual storage and retrieval operations on the target
persistence store. In order to extend the framework with support for a new persistence mechanism
type, an appropriate IPersister must be created and a sub-class of PersistenceMechanism that
deals with the actual storage.

Mapping Layer
Mapping layer contains the classes that perform the mapping between Java class definitions and
their respective storage equivalents. The mapping classes are ClassMap, ColumnMap, Mapping-
Manager and Mapper. Mapping layer offers the service of analyzing the structure of Java objects
passed to it and extracting the information found in them. It provides the ability to map the con-
tents of Java objects to corresponding persistence storage record sets and vice versa. Mapping
layer is built on top of Java's runtime reflection support that allows for inspection of object struc-
ture and content at runtime.

Mapping layer is a stateless layer in that it does not maintain state information. This means that
calling this layer's service to map an object to its storage equivalent does not require that the layer
to contain prior information on that object - only its structure is maintained within the layer,
which applies to all objects of a given class.

PersistF

774

Design Patterns Used in PersistF
PersistF is built through deliberate applications of software design patterns. Wealth of informa-
tion is available in (Fowler, 2003; Gamma et al., 1995; Larman, 1997), which cover the definition
of design patterns and their concrete application in problem solving. Our work has been greatly
improved by the application of these design principles. This section will elaborate on the ways in
which design patterns were applied in the construction process of PersistF.

Façade
Façade pattern allows for a definition of an application service’s entry point. It seemed highly
appropriate to have such a mechanism in-built into the framework so that external applications
would have a fairly simple entry point to access and use PersistF. Our main façade class is the
Session class that provides the necessary methods to load, insert, update and delete objects. Ses-
sion class in turn “knows” how to interact with a number of PersistF classes to get the work ac-
complished. Figure 5 illustrates this.

Figure 5: Session Pattern in PersistF

Factory
Factory pattern is a very common design pattern with several variations. PersistF uses the Factory
design pattern in several places to hide the ways in which certain implementation classes are pro-
vided to the framework’s runtime execution environment.

 Jusic & Lee

 775

Figure 6: Factory Pattern in PersistF

Figure 6 illustrates the creation of Persister classes is accomplished through a PersisterFactory
class that provides the appropriate Persister class, depending on the framework settings at run-
time. Session class need not know the decision making process that goes into the creation of the
appropriate Persister class – the details of it are hidden in the factory itself. Factory creation guar-
antees that the Session will obtain the appropriate Persister class that is able to work with the un-
derlying persistence mechanism.

Strategy
Strategy pattern is applied to the way in which the class inheritance hierarchy mapping is handled
in PersistF. A different hierarchy mapping strategy is employed depending on the chosen way in
which the application deals with the hierarchy for a target domain class. PersistF is able to use a
different hierarchy mapping algorithm for each domain class, having support for mapping one
class to one table, one concrete class to one table and one table for entire class hierarchy mapping
strategies. These strategies are further extended in the context of handling hierarchy mapping for
file-based persistence mechanism. Actual implementation of the target mapping algorithm is cre-
ated with the use of a Factory design pattern that creates different Strategy implementations. This
is illustrated in Figure 7.

Figure 7: Strategy Pattern in PersistF

PersistF

776

Unit of Work
PersistF uses Unit of Work (Fowler, 2003) pattern to deal with demarcation of persistence work.
Transaction demarcations (start and end of a transaction) are handled through the application of
the Unit of Work pattern. It provides for an easy way to deal with having a complete picture of all
affected objects for a given persistence context through the ability to keep track of added,
changed or deleted persistent objects. Figure 8 illustrates the use of Unit of Work pattern in the
context of Session and Transaction classes.

Figure 8: Unit of Work Pattern in PersistF

Using the Framework
Testing the framework has been used within a web application environment in which the frame-
work’s functionality was put to the test. The goal of the exercise was to test-drive the framework
in a typical development environment. In this case, we choose a web-based application as our
development test bed. The application was a general student registry, based on Java JSP tech-
nologies and running on Apache Tomcat Servlet container, using MySQL open source database
and XML as the different persistence stores.

We concluded that the speed of development was very good as we were able to quickly add sup-
port for domain classes and provide the basic CRUD functionalities on them without the need for
much configuration on the part of the framework. In addition, switching to a different storage
mechanism had no impact on the application, except the obvious minor configuration of the
framework. Figures 9 and 10 show screenshots of the sample application we built to test drive
PersistF’s features.

 Jusic & Lee

 777

Figure 9: PersistF Demo Application – Showing list of records

Figure 10: PersistF Demo Application – Editing Record

Conclusion
Our work produced a transparent persistence framework, called PersistF, that is able to handle
multiple persistence storage mechanisms – a feature often not found in the most popular Java-
based persistence framework in the market. In addition, PersistF requires minimal configuration

PersistF

778

by the developer. The goal was to minimize complicated configuration files which are often a
source of frustration during development. Instead, PersistF dynamically works with domain
classes and generates the required storage constructs for interacting with the persistence store on
the fly. Our initial implementation focused on providing the support for multiple persistence
mechanisms as well as achieving the ease of use.

Future work includes a more robust handling of persistence transactions and tackling caching is-
sues. In addition, framework will add support for object-oriented databases.

References
Ambler, W.S. (2002). The object-relational impedance mismatch. Retrieved February 20, 2007 from

http://www.agiledata.org/essays/impedanceMismatch.html

Ambler, W.S. (2000). Mapping objects to relational databases: O/R mapping in detail. Retrieved February
20, 2007 from http://www.agiledata.org/essays/mappingObjects.html

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996). Pattern-oriented software
architecture: a system of patterns. John Wiley and Sons.

Castor - open source data binding framework. (2004). Retrieved from http://www.castor.org/

Fowler, M. (2003). Patterns of enterprise application architecture. Pearson Education Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns – Elements of reusable object-
oriented software. Addison Wesley.

Java Community Process. (2004). http://www.jcp.org/

JBoss. (2004). Open source Java application server. Retrieved from http://www.jboss.org/index.html

Jordan, M., & Atkinson, M. (1998). Orthogonal Persistence for Java - A Mid-term Report. Proceedings of
the Third International Workshop on Persistence and Java (PJW3).

King, G. & Bauer, C. (2006). Hibernate – relational persistence for idiomatic Java. Retrieved February 20,
2007 from http://www.hibernate.org/hib_docs/v3/reference/en/html/.

Larman, C. (1997). Applying UML and patterns. Prentice Hall.

Russell, C. (2003). JSR-000012 Java™ data objects (JDO) specification (maintenance release), version 2.1.
Retrieved from http://jcp.org/aboutJava/communityprocess/final/jsr012/index2.html.

SUN Microsystems, EJB 3.0 Expert Group. (2006). JSR 220 - enterprise Java beans, version 3.0, Java per-
sistence API.

Wikipedia. (2003). Persistence. Retrieved February 20, 2007 from http://en.wikipedia.org/wiki/Persistence.

Biographies
Samir Jusic (samir@alcassoft.com) is currently a Chief Technology
Officer for Alcassoft – a software development company based in
Kuala Lumpur, Malaysia. His interests are with software architecture
and ways to improve the software development lifecycle through agile
methodologies. He holds a bachelor’s degree in Information Systems
Engineering from Multimedia University, Malaysia and a Master of
Software Engineering from University Malaya, Malaysia.

 Jusic & Lee

 779

Sai Peck Lee is currently an associate professor at Faculty of Com-
puter Science & Information Technology, University of Malaya. She
obtained her Master of Computer Science from University of Malaya,
her Diplôme d’Études Approfondies (D. E. A.) in Computer Science
from University of Pierre et Marie Curie (Paris VI) and her Ph.D. de-
gree in Computer Science from University of Panthéon-Sorbonne
(Paris I). Her current research interests include Software Engineering,
Object-Oriented (OO) Methodology, Software Reuse and Framework-
based Development, Information Systems and Database Engineering,
OO Analysis and Design for E-Commerce Applications and Auction
Protocols. She has published an academic book and more than 70 pa-
pers in various local and international conferences and journals. She

had also served as the executive editor of a journal for 2 years, and has been in the programme
and reviewer committees of several local and international conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

