Informing Science INSITE - “Where Parallels Intersect” June 2002

COLORS for Programming: A System to Support
the Learning of Programming

Stuart Garner
Edith Cowan University, Perth, Australia

!s.qarner@ecu.edu.au!

Abstract

Learning introductory software development is a difficult task and students often perceive programming
subjects as requiring significantly more work than others. This paper describes a learning model for pro-
gramming that has its basis in cognitive load theory. This theory suggests that there are three types of
cognitive load that learners experience: intrinsic which is determined by the mental demands of the do-
main of knowledge; extraneous which is generated by the instructional format used in the teaching and
learning process; and germane which can be utilised by learners to engage in conscious processing.

The learning model is used as a basis, together with a particular instructional design framework, for the
development of “COLORS (Cognitive Load Reduction System) for Programming”. COLORS is de-
scribed together with a software tool, CORT (Code Restructuring Tool), that has been developed by the
author to support various aspects of COLORS.

Keywords: cognitive load theory; programming; instructional design; code restructuring.

Introduction

Learning introductory software development is a difficult task and students often perceive programming
subjects as requiring significantly more work than others (Green, 1998). Students need to understand con-
cepts such as structuring code, reusability, ease of maintenance, meaningful naming, and user interface
design for all but the simplest programs. Fowler & Fowler (1993) suggest that the challenge of learning
programming in introductory courses lies in simultaneously learning: general problem solving skills; al-
gorithm design; program design; a programming language in which to implement algorithms as programs;
and a software tool (the programming environment) that supports design and implementation. This leads
to many students feeling overwhelmed.

This paper describes a learning model for programming that takes cognitive load theory into account. The
model is used as a basis, together with a particular instructional design framework (Oliver, 1999), for the
development of “COLORS (Cognitive Load Reduction System) for Programming”. COLORS is then de-
scribed together with a software tool, CORT (Code Restructuring Tool), that has been developed by the
author to support various aspects of COLORS.

Material published as part of these proceedings, either on-line or in ..
print, is copyrighted by Informing Science. Permission to make CO g n |t|Ve L 0O ad Th eo ry

digital or paper copy of part or all of these works for personal or

classroom use is granted without fee provided that the copies are Cognitive load theory is built upon the idea that

not made or distributed for profit or commercial advantage AND Ki is limited d hunk
that copies 1) bear this notice in full and 2) give the full citation on WOrKINg memaory 1S Imited to around seven chunks

the first page. It is permissible to abstract these works so long as of material (Miller, 1956) and that people can only

credit is given. To copy in all other cases or to republish or to post . .
on a server or to redistribute to lists requires specific permission deal with two or three elements SImuItaneoust.

from the publisher at rubhsh'er@ﬂ'lfunm'rqm'm'tq

mailto:Publisher@InformingScience.org
mailto:s.garner@ecu.edu.au

COLORS for Programming
The degree of interactivity between the elements also affects the capacity of working memory.

Chess playing can be considered a problem solving domain and research (Chase & Simon, 1973) showed
that the main difference between novices and experts was the fact that the latter had thousands of board
configurations, as many as 100000 (Simon & Gilmartin, 1973), stored in long-term memory within sche-
mata. The consequence is that, unlike less-skilled players, experts do not have to spend as much time
searching for good chess moves using their limited working memory. Similarly, research into problem
solving (Carroll, 1994) confirmed that, compared to novices, experts have knowledge of an enormous
number of problem states and their associated moves. Such states are within long-term memory and such
research indicates that human problem solving comes from stored knowledge and not from complex rea-
soning within working memory. It is suggested that humans are poor at complex reasoning unless most of
the elements with which we reason are already in long-term memory, working memory being incapable of
highly complex interactions using novel elements (Sweller, van Merrienboer, & Paas, 1998). This means
that novices who are attempting a problem must engage in complex chains of reasoning using their work-
ing memory and in doing so it is likely that working memory will be overburdened. In other words the
cognitive load on novices is too great.

Ways in which cognitive load can be reduced for novice problem solvers are therefore very important. In
the schema theory of model representation, a schema can be anything that can be treated as a single entity
or element such as a mathematical formula or a particular programming algorithm. Schemata have the
function of storing knowledge and reducing the burden on working memory.

Experts can process information relevant to their domain automatically, novices however having to proc-
ess information consciously (Schneider & Shiffrin, 1977; Tindall-Ford, Chandler, & Sweller, 1997). An
example of such automatic processing is that of the expert driver who can drive their car without appar-
ently thinking, whereas a learner driver has to consciously think of several things at the same time such as
depressing the clutch and shifting to a new gear, observing the road ahead, moving the steering wheel etc.
Any instructional design for a domain has to therefore not only encourage the construction of sophisti-
cated schemata but also encourage the automatic processing of those schemata. This is important because
of the limited capacity of working memory that can only deal with a few schemata at the same time. The
ease with which information can be processed in working memory is the main thrust of cognitive load
theory.

Working memory may be affected by intrinsic, extraneous and germane cognitive load (Sweller et al.,
1998) and an understanding of these three categories is helpful for instructional designers.

Intrinsic Cognitive Load

Intrinsic cognitive load is determined by the mental demands of the task (Chandler & Sweller, 1996).
Some tasks such as the learning of the basic vocabulary of a foreign language have a very low intrinsic
cognitive load. Each element or schema is independent from the others with no interactivity and subse-
quently the required mental processing, or intrinsic cognitive load, is low. Tasks that have low element
interactivity can be learnt serially rather than simultaneously. Tasks with a high degree of element interac-
tivity have a heavy intrinsic cognitive load and an example is the learning of the grammar of a foreign
language as all the words in phrases need to be considered and processed at once.

Computer programming is considered to be a domain with a high intrinsic cognitive load and this needs to
be recognised in any instructional design. The intrinsic cognitive load cannot be reduced, however some-
thing can be done about the extraneous cognitive load.

534

Garner

Extraneous Cognitive Load

Extraneous cognitive load is generated by the instructional format used in the teaching and learning proc-
ess and poor design leads to a high extraneous cognitive load. If a high extraneous cognitive load is com-
bined with a high intrinsic cognitive load then this can lead to working memory overload. This is often
what happens with novice programmers when the instructional design is poor.

The important point is that when the intrinsic cognitive load of the material is high, then it is incumbent
on the instructional designer to think very carefully and ensure that the extraneous cognitive load is as low
as possible. A lot of research has been done in looking at ways of reducing extraneous cognitive load, for
example (Chandler & Sweller, 1991; Kalyuga, Chandler, & Sweller, 1998; Tindall-Ford et al., 1997).
These include: integrating diagrams and text so as to reduce the "split-attention" effect; goal-free problem
solving; and the use of worked examples in problem solving.

Germane Cognitive Load

It is thought that if the instructional design is such that the extraneous cognitive load is kept to a mini-
mum, and the intrinsic cognitive load is not too high, then there may be some unused working memory
available (Sweller et al., 1998). This could then be used by learners, with appropriate instructional design,
to engage in conscious processing that helps in the construction of schemata in the particular domain of
interest. This conscious processing is the germane cognitive load. An example is the use of part-complete
solutions in the learning of problem solving (Paas, 1992; van Merrienboer, 1990; Van Merrienboer & De
Croock, 1992). The studying of complete worked examples by students is seen as one way of reducing the
extraneous cognitive load. When students have to complete an incomplete worked example then they
have to "mindfully abstract™" the schemata from the example in order to understand it. That is, they have to
consciously process it and this increases the germane cognitive load.

A Learning Model for Programming

A learning model for programming has been designed that is firmly based on cognitive load theory. The
use of worked examples in the learning of programming is sometimes known as the “reading” method and
this method reduces the extraneous cognitive load on students. However it does not encourage students to
think deeply about the examples being read and to “extract” the necessary schemata. However the “com-
pletion” method of learning programming requires students to have to complete part-complete programs
thereby encouraging schemata production. The learning model makes use of the completion method and
has the following attributes:

1. Support for student centred learning. Different learners gain expertise in programming at different
rates. It is therefore important that the learning environment supports independence thereby allowing
learners to construct knowledge within their own time frames. (eg. Jonassen, 1996). The completion
method is a refinement of the reading method of learning programming and this method allows learn-
ers to work through appropriate materials independently and in a self-paced manner and also supports
active learning with students having to engage with learning materials.

2. Support for the creation of appropriate schemata and mental models. The learning environment
should support the creation and amendment of appropriate schemata that pertain to programming and
also support the mental processing that needs to take place during this process (eg Winn, 1996). The
completion method supports such schemata development in the form of stereotypical programming
plans. The environment should also support the development of mental models of notional machine
processing.

535

COLORS for Programming

3. Support for the reduction of extraneous cognitive load. The learning environment should help re-
duce the extraneous cognitive load as programming is considered to have a high intrinsic cognitive
load (eg Sweller, 1998). This is supported by using the reading method of learning programming.

4. Support for the increase of germane cognitive load. To promote programming skills, cognitive load
theory suggests that a learning environment should encourage learners to mindfully abstract appropri-
ate programming patterns (eg Paas, 1992). The removal of lines of code from complete programs in-
creases the germane cognitive load on learners. The environment would also require learners to have
to answer questions concerning their programming solutions.

5. Support for the promotion of reflection and higher order thinking. The development of problem
solving skills in a specific domain of knowledge requires support for higher order thinking with learn-
ers being encouraged to reflect on their solutions to given problems (eg McLoughlin, 1997). The
completion method reduces the amount of lower order thinking that is required and encourages more
higher order thinking to take place.

COLORS for programming

COLORS (Cognitive Load Reduction System) for program-
ming is a system that has been designed by the author to help
students in their learning of programming at Edith Cowan Uni-
versity in Australia. It has been designed to try and meet the
requirements of the learning model above and it has also taken
into account a generic learning framework proposed by Oliver
(1999). The framework is heavily influenced by his belief that
constructivism best describes how learning takes place and it
comprises three critical elements, these being: learning re-
sources; learning activities; and learner supports as shown in
figurel.

Learning
Resources

Learrer
Supports

Learning Activities

. . . Figure 1: Oliver’s Instructional
The overall design of COLORS for programming will now be Design Framework

described with reference to this instructional design framework.

Learning Resources

Learning resources provide the content for a course and can be thought of as the materials which are used
to help students construct their knowledge and meaning with respect to a domain of knowledge. Tradi-
tionally these resources have been available in the form of books and lecture notes and the move to flexi-
ble technology based systems has led to a lot of content being made available electronically. Unfortu-
nately it has been estimated that many such systems are too content-oriented with 90% of planning and
development being in content creation (Dehoney, 1999).

This emphasis within COLORS is the completion method of programming and so the content is provided
by a programming textbook (Schneider, 2000) and the lecture notes delivered by the lecturer. It is recog-
nised that on-line content and resources would be very useful to learners and is something that might be
explored in the future. Typical content for programming courses includes descriptions of language syntax;
data and control structures; descriptions of algorithms; descriptions of how to solve certain categories of
problem; and example programs.

536

Garner

Learning Activities

Learning activities are the second element of the instructional design framework and play a fundamental
role in determining learning outcomes (Wild, 1997). The activities determine how learners engage with
the various materials and well designed activities can help reduce the extraneous cognitive load and
stimulate the germane cognitive load.

The activities that are used within COLORS for programming comprise a set of programming problems
and their part-complete solutions that need to be completed by a learner. The completion of a part-
complete solution is done by selecting appropriate lines of code from a set of possible lines and placing
them in the “correct” locations within the corresponding part-complete solution; and / or keying-in appro-
priate lines of code.

After “completing” a program, that program is tested in the programming environment of the particular
language being used which, in this case, is Visual BASIC (VB).

There are also questions that learners are expected to answer in connection with the program that they
have just completed. Such questions are another way of stimulating students to construct knowledge by
applying another form of germane cognitive load.

These learning activities have been designed to be directly supported by a software tool, CORT (Code
Restructuring Tool), that has been built by the author.

Learning Supports

Learning supports are the third element of the instructional design framework and can be thought of as the
supports required to help guide and provide feedback to learners in a way that is responsive and sensitive
to learner individual needs (McLoughlin, 1998). In “traditional” settings such supports have been pro-
vided by actively involved teachers (Laurillard, 1993) whereas in technology based learning environ-
ments, such supports are often known as “scaffolds” to help learners during their knowledge construction
process (Roehler, 1996). In programming, an example of such a support is the facility that some pro-
gramming editors have to help complete lines of programming code for the user as they are keyed-in. It is
usually accepted that scaffolding is gradually reduced during learning, this process being known as “fad-

ing”.
In COLORS for programming, some learning activities act as learning supports and so the boundary be-

tween activities and supports is somewhat blurred. There are several learning supports in COLORS, some
of which are directly supported by CORT.

The first support is provided by the set of possible lines of code that is given to a learner to be used in the
completion of a part-complete program. The level of this support can be varied by providing one of the
following methods:

Method 1. All of the lines of code that are missing from the program.

Method 2. All of the lines of code that are missing from the program plus some extra lines of code that
are not needed to complete the program. These extra lines act as distracters.

Method 3. Zero or more lines of code that are missing from the program, other missing lines having to be
keyed-in by the learner.

The important variable that affects which of the above methods should be used for a given problem is the
degree of difficulty of that problem. For example if a problem is relatively simple then method 2 might be
used, whereas method 1 might be used with a more difficult problem. Fading is not straight forward as the
programming problems in latter the part of a programming course are usually more difficult than earlier
ones and it might therefore still be necessary to use method 1 supports for some of the problems. CORT

537

COLORS for Programming

has been designed to provide a mechanism to easily manipulate the missing lines of code from a part-
complete solution.

The second support provided by COLORS is a facility to easily move missing lines of code into a part-
complete solution and within that solution. Such support has not been available in previous work with re-
spect to the completion method and yet this is seen as important in helping reduce extraneous cognitive
load.

The third support provided by COLORS is the provision, for each programming problem, of a screen im-
age of the problem interface. The interface is the output “form” or window that is displayed to a user of a
program when it is executed and includes the various objects such as buttons and text boxes. The screen
image is also annotated with the internal names of the objects (i.e. the object names that are used within
the programming code) thereby reducing the split-attention effect (eg. Chandler, 1991).

The fourth support provided by COLORS is the environment of the programming language itself. Many
such modern programming environments, or integrated development environments, provide sophisticated
facilities to help programmers debug their programs. These include the tracing, or step by step execution,
of code and the ability to display the contents of variables. The language used is Visual BASIC (VB)
which has excellent debugging facilities that can be used by novices in their learning of programming.

Other supports that are provided by COLORS include the “conventional” ones such as the provision of a
tutor, other students, and a textbook. When campus based students require help in solving a programming
problem, they might directly seek such help
from their tutor or fellow students. With a
flexible, technology based course that sup- S L Oliver's Instructional
port would most likely be provided by Completion Hethod peston Framenert
email. Learners also look to their conven-
tional textbook which, in addition to provid- \ /
ing content, can also be considered to pro-
vide support.

COLORS for Programming

Learner
Supports

Debugger. Tutar.
Other students,
Textbhook
Facility to copy program
to VB environment,
“iew problem interface.
Facility to mowve lines.

’ Missing lines.
Frogram completion

EXEICISES.
Answer gquestions about
problems.

Learning
Resources

Summary of COLORS for pro-
gramming

The various components of COLORS for
programming were developed from the
learning model for programming using the
completion method and from the instruc-
tional design framework proposed by Oliver
(1999). The code restructuring tool, CORT,
was designed to support certain features of
COLORS for programming. Figure 2 sum-
marises the development of COLORS and
also those features supported by CORT.

Textbook,
Lecture notes,

Mote: Shaded
background
indicates support

Test programs. fram CORT

Learning
Activities

Figure 2: COLORS for Programming

CORT (Code Restructuring Tool)

CORT was designed to provide a basis for learning activities that in turn provide learner supports. CORT
will be described from a learner’s standpoint.

538

Garner

CORT Description: from a Learner’s Standpoint

1. The learner runs the CORT program and

loads a “completion” problem. The problem
description is displayed. The only actions
that can be taken are to print out the descrip-
tion or to close the window. The problem de-
scription may have been given to learners in
hard copy format.

After closing the problem description win-
dow, two parallel windows can be seen. The
right-hand window contains the part-
complete solution to the problem and the
left-hand window contains lines that can be
used to complete the solution. These win-
dows can be expanded and contracted hori-
zontally so as to view the complete lines by

clicking the corresponding ﬂ button.

3. A learner can click on 2 to view the prob-

[select Problem | View.

o transactions. The program shovld

pa
aces, sight justified in a 15 space column.

Interface to see what the output should Look ik

ITh

[iote

o Notalllines of code from the 1oft-hand side need to be used.

ese can be viewed by selecting

|

oveable

[2E ol sleaeaisnol
Ir

rivace

Sub OutpucToTwoPlaces (balance hs Hing

X . . DT T
lem interface. This is a screen image show- e
ing the expected output “form” for the prob- * Sivalueone
lem that the learner is attempting. This im-] " Savaluetuo

age is annotated with the internal VB names
of the objects. This again lowers the extra-
neous cognitive load by reducing the “split-
attention” effect.

cnjdNewBalance

i
h2za567809012345

ls506.31
ls 506308
$506.3085

picDisplay

Clase

539

COLORS for Programming

4.

540

A line can be moved from the left to the
right by: highlighting the line in the left-hand
window; highlighting the line in the right-
hand window after which the line from the

left is to be placed; and clicking the ﬁl but-
ton. Several lines can be highlighted in the
left-hand window and moved in one opera-
tion. Lines can also be moved back into the
left-hand window.

Lines can be rearranged in the right-hand
window by moving them up or down. Lines
can also be indented or outdented. Blank
lines can be inserted before or after an exist-
ing line and blank lines can be deleted.

Lines of code can be keyed-in by learners
using a simple text editor. This can be in-

voked by clicking on the = button. After
editing the program, the editor is closed by
clicking the Return button and the changes
are reflected in the original right-hand win-
dow.

When a learner is ready to test their solution,
they can click on the 8l button and the code
from the right-hand windows is pasted into
the Windows Clipboard. They then run VB
and open a file that contains the VB output
“form” but does not contain any code. This
figure shows an example VB “form” with an
empty “code” window.

4 CORT - Code Restructuring Tool - C:\Temp\cort\00160300160.pes.
Bref

Cade

Private Sub crdNevBalance Click()
Dim valueOne As Single, valueTwo is Single
Dim accountBalance is Single, newBalance As

Call OutputToFourPl
Call QutpurToFourPl

ce = val(Bal
)

ok 2k A=Al

aw
picdisplay.Print "123456789012345"
picdisplay.Print

End Sub

Private Sub OutputToTwoPlaces(balance s Sing

End Suo

Private Sub OutputToThreePlaces (balance 43 Siv|
]]

i/ CORT - Code Restructuring T ool - C:\T emp\coit\00160100160.pcs

e Preferences Cipboard Proflem Help

£\ 5]-0|0 1e| B[R
of

Call OutputTaTwoPles
Call OutputToTwoPl
Call Output

Val{txtValueCne.Text)
Call OutputToFourPl: WVal{txtValueTwo.Text)
pichisplay.Print Fo
pichisplay.Print Fo
End sub
Private Sub OutputToFourPla (balance is Singl
picDisplay.Print Format (FormatCurrency (balance,
picbisplay.Print Formal
Formd|indent /

T e

ork out new balance
Let nevBalance = sccountBalance - valueone

\Oucput the new balanes
haiaMove lines [2]insert / remove [*= *="
up or down blank lines
TcDisplay. Print f123456785012345"
cDisplay.Pr

Moveable \ /
|2lc siskrsslanpial

End sun

Private Sub OutpucToThreePlacesibalance is Siy|
]

ing Tool - C:\Temp\coit\00160\00160.pcs
Fie_references mHelp

CE|S-000-|e|)= (R

4/ CORT - Code Rest

of code that can be | - Code |
Call OutputToTwoPlaces (newBalance] [=]
all e
ut 5 |as
ut ce atter
. e.
Private Sub cmdNevBalance Click()
picDispl | Dim valueome s Single, valueTwn is Single
End Sup r: nce As Single, newBalamce As Single d
Pr 1vat
picDisp) t put
picDispl © ac ance = Val{txticcountBalance.Text)
picDispl t va e = Val{txtValueone.Taxt)
© val Val{txtValueTwo. Text] |
Work out new balance
L 3/
Close =
AT S

Private Sub OutputToThresPlaces (balance

is SJLI‘

v Diagram Tools Add-Ins Window Help

oy e HEEERIAD

General | o
& ltem Profit X/
=l Bk e
5 Forms
A 1) frritenproft(Tutes-2
1= [This "Form" already
F e lexists so a learner does
lnot have to create it

EfEs

P
au 2
(o =]

Caleulate profi

= [
& ~ |7

TR| ™ Proiect1 - frmitemProfit (Code) =
=
g cGeneral) ~| [ectarations)
= I

Empty code
indow

8. A learner now pastes the contents of the e e e —————
Windows Clipboard into VVB’s empty code . S) —
window by clicking the ‘& button. The pro- -
gram can then be run and / or traced in VB.

After testing a program in VB, a learner can

if necessary switch back to CORT and
amend the solution, recopy the code and re-
paste it into VB. This is an iterative process
that is carried out until the program works to
the learner’s satisfaction.

Conclusions

COLORS for programming and CORT have been used with students at Edith Cowan University during
semester 2, 2001, and data has been collected concerning its use as part of a research project. The data is
of a qualitative nature, the data collection methods including questionnaires, on-line journals, observation,
and interviews. The data has not yet been analysed however preliminary feedback suggests that students
enjoy using the system and that cognitive load is reduced.

Some student comments include:

With CORT it was good as it enabled me to finish something and therefore | prefer to
use it. Getting programs working makes you feel better.

If I was just asked to study code, then I would not do it properly, so CORT really helps.

Very happy with CORT because lines are there to help. About the right amount of help
is provided. If I did not use CORT then I would find it very difficult to know where to
start.

The data analysis that has yet to be undertaken will hopefully reveal interesting insights into the useful-
ness of the COLORS for programming system.

References

Carroll, W. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Com-
puting Psychology, 86, 360-367.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293-332.

Chandler, P., & Sweller, J. (1996). Cognitive Load while Learning to use a computer program. Applied Cognitive Psychology,
10, 151-170.

Chase, W. G., & Simon, H. A. (1973). The Mind's Eye in Chess. In W. G. Chase (Ed.), Visual Information Processing. New
York: Academic.

Dehoney, J., & Reeves, T. (1999). Instructional and social dimensions of class web pages. Journal of Computing in Higher
Education, 10(2), 19-41.

Fowler, W. A. L., & Fowler, R. H. (1993). A Hypertext Approach to Computer Science Education Unifying programming
Principles. Journal of Multimedia and Hypermedia, 2(4), 433-441.

Green, R. (1998). Learning Programming through JavaScript. Paper presented at the Australian Computers in Education Con-
ference, Adelaide, Australia.

Jonassen, D. H., & Reeves, T. C. (1996). Learning with technology: Using computers as cognitive tools. In D. H. Jonassen
(Ed.), Handbook of research on educational communications and technology (pp. 693-719). New York: Macmillan.

541

COLORS for Programming
Kalyuga, S., Chandler, P., & Sweller, J. (1998). Levels of expertise and instructional design. Human Factors, 40, 1-17.

Laurillard, D. (1993). Rethinking University Teaching: A Framework for the Effective use of Educational Technology.: London
Routledge.

McLoughlin, C. (1997). Investigating conditions for higher order thinking in telematics environments. Unpublished PhD, Edith
Cowan University, Perth.

McLoughlin, C., & Oliver, R. (1998). Scaffolding Higher Order Thinking In A Telelearning Environment. Paper presented at
the Ed-Media/Ed-Telecom 98 World Conference On Educational Multimedia And Hypermedia & World Conference On
Educational Telecommunications, Virginia.

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity to Process Information.
Psychological Review(63), 81-97.

Oliver, R. (1999). Exploring strategies for on-line teaching and learning. Distance Education, 20(2), 240-254.

Paas, F. G. W. C. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load ap-
proach. Journal of Educational Psychology, 84, 429-434.

Roehler, L. R., & Cantlon, D. J. (1996, May 10th 1996). Scaffolding: A Powerful Tool in Social Constructivist Classrooms,
[HTML Document]. Available: http://www.educ.msu.edu/units/literacy/paperlr2.htm [1998, 3/5/98].

Schneider, D. (2000). An introduction to programming in Visual BASIC 6.: Prentice Hall.

Schneider, W., & Shiffrin, R. (1977). Controlled and automatic human information processing: Detection, search and attention.
Psychological Review, 84, 1-66.

Simon, H., & Gilmartin, K. (1973). A Simulation of memory for Chess Positions. Cognitive Psychology, 5, 29-46.

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design. Educa-
tional psychology review, 10(3 Sep 01 1998), 251-296.

Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental
Psychology: Applied, 3, 257-287.

van Merrienboer, J. J. G. (1990). Strategies for Programming Instruction in High School: Program Completion vs. Program
Generation. Journal of educational computing research., 6(3), 265-.

van Merrienboer, J. J. G., & De Croock, M. B. M. (1992). Strategies for computer-based programming instruction: program
completion vs. program generation. Journal of Educational Computing Research, 8(3), 365-394.

Wild, M., & Quinn, C. (1997). Implications of educational theory for the design of instructional multimedia. British Journal of
Educational Technology, 29(1), 73-82.

Winn, W., & Snyder, D. (1996). Cognitive Perspectives in Psychology. In D. H. Jonassen (Ed.), Handbook of research on edu-
cational communications and technology (pp. 112-142). New York: Macmillan.

Biography
Stuart Garner is a member of the school of Management Information Systems within the faculty of

Business and Public Management at Edith Cowan University in Perth, Western Australia. He teaches in
the areas of systems and software development, and Web commerce development.

542

