
Informing Science InSITE - “Where Parallels Intersect” June 2002 

COLORS for Programming: A System to Support  
the Learning of Programming 

Stuart Garner 
Edith Cowan University, Perth, Australia 

s.garner@ecu.edu.au  

Abstract 
Learning introductory software development is a difficult task and students often perceive programming 
subjects as requiring significantly more work than others. This paper describes a learning model for pro-
gramming that has its basis in cognitive load theory. This theory suggests that there are three types of 
cognitive load that learners experience: intrinsic which is determined by the mental demands of the do-
main of knowledge; extraneous which is generated by the instructional format used in the teaching and 
learning process; and germane which can be utilised by learners to engage in conscious processing. 

The learning model is used as a basis, together with a particular instructional design framework, for the 
development of “COLORS (Cognitive Load Reduction System) for Programming”. COLORS is de-
scribed together with a software tool, CORT (Code Restructuring Tool), that has been developed by the 
author to support various aspects of COLORS. 

Keywords: cognitive load theory; programming; instructional design; code restructuring. 

Introduction 
Learning introductory software development is a difficult task and students often perceive programming 
subjects as requiring significantly more work than others (Green, 1998). Students need to understand con-
cepts such as structuring code, reusability, ease of maintenance, meaningful naming, and user interface 
design for all but the simplest programs. Fowler & Fowler (1993) suggest that the challenge of learning 
programming in introductory courses lies in simultaneously learning: general problem solving skills; al-
gorithm design; program design; a programming language in which to implement algorithms as programs; 
and a software tool (the programming environment) that supports design and implementation. This leads 
to many students feeling overwhelmed. 

This paper describes a learning model for programming that takes cognitive load theory into account. The 
model is used as a basis, together with a particular instructional design framework (Oliver, 1999), for the 
development of “COLORS (Cognitive Load Reduction System) for Programming”. COLORS is then de-
scribed together with a software tool, CORT (Code Restructuring Tool), that has been developed by the 

author to support various aspects of COLORS. 

Cognitive Load Theory 
Cognitive load theory is built upon the idea that 
working memory is limited to around seven chunks 
of material (Miller, 1956) and that people can only 
deal with two or three elements simultaneously. 

Material published as part of these proceedings, either on-line or in 
print, is copyrighted by Informing Science. Permission to make 
digital or paper copy of part or all of these works for personal or 
classroom use is granted without fee provided that the copies are 
not made or distributed for profit or commercial advantage AND 
that copies 1) bear this notice in full and 2) give the full citation on 
the first page. It is permissible to abstract these works so long as 
credit is given. To copy in all other cases or to republish or to post 
on a server or to redistribute to lists requires specific permission 
from the publisher at Publisher@InformingScience.org    

mailto:Publisher@InformingScience.org
mailto:s.garner@ecu.edu.au


COLORS for Programming 

534 

The degree of interactivity between the elements also affects the capacity of working memory. 

Chess playing can be considered a problem solving domain and research (Chase & Simon, 1973) showed 
that the main difference between novices and experts was the fact that the latter had thousands of board 
configurations, as many as 100000 (Simon & Gilmartin, 1973), stored in long-term memory within sche-
mata. The consequence is that, unlike less-skilled players, experts do not have to spend as much time 
searching for good chess moves using their limited working memory. Similarly, research into problem 
solving (Carroll, 1994) confirmed that, compared to novices, experts have knowledge of an enormous 
number of problem states and their associated moves. Such states are within long-term memory and such 
research indicates that human problem solving comes from stored knowledge and not from complex rea-
soning within working memory. It is suggested that humans are poor at complex reasoning unless most of 
the elements with which we reason are already in long-term memory, working memory being incapable of 
highly complex interactions using novel elements (Sweller, van Merrienboer, & Paas, 1998). This means 
that novices who are attempting a problem must engage in complex chains of reasoning using their work-
ing memory and in doing so it is likely that working memory will be overburdened. In other words the 
cognitive load on novices is too great. 

Ways in which cognitive load can be reduced for novice problem solvers are therefore very important. In 
the schema theory of model representation, a schema can be anything that can be treated as a single entity 
or element such as a mathematical formula or a particular programming algorithm. Schemata have the 
function of storing knowledge and reducing the burden on working memory. 

Experts can process information relevant to their domain automatically, novices however having to proc-
ess information consciously (Schneider & Shiffrin, 1977; Tindall-Ford, Chandler, & Sweller, 1997). An 
example of such automatic processing is that of the expert driver who can drive their car without appar-
ently thinking, whereas a learner driver has to consciously think of several things at the same time such as 
depressing the clutch and shifting to a new gear, observing the road ahead, moving the steering wheel etc. 
Any instructional design for a domain has to therefore not only encourage the construction of sophisti-
cated schemata but also encourage the automatic processing of those schemata. This is important because 
of the limited capacity of working memory that can only deal with a few schemata at the same time. The 
ease with which information can be processed in working memory is the main thrust of cognitive load 
theory. 

Working memory may be affected by intrinsic, extraneous and germane cognitive load (Sweller et al., 
1998) and an understanding of these three categories is helpful for instructional designers. 

Intrinsic Cognitive Load 
Intrinsic cognitive load is determined by the mental demands of the task (Chandler & Sweller, 1996). 
Some tasks such as the learning of the basic vocabulary of a foreign language have a very low intrinsic 
cognitive load. Each element or schema is independent from the others with no interactivity and subse-
quently the required mental processing, or intrinsic cognitive load, is low. Tasks that have low element 
interactivity can be learnt serially rather than simultaneously. Tasks with a high degree of element interac-
tivity have a heavy intrinsic cognitive load and an example is the learning of the grammar of a foreign 
language as all the words in phrases need to be considered and processed at once. 

Computer programming is considered to be a domain with a high intrinsic cognitive load and this needs to 
be recognised in any instructional design. The intrinsic cognitive load cannot be reduced, however some-
thing can be done about the extraneous cognitive load. 



  Garner 

  535 

Extraneous Cognitive Load 
Extraneous cognitive load is generated by the instructional format used in the teaching and learning proc-
ess and poor design leads to a high extraneous cognitive load. If a high extraneous cognitive load is com-
bined with a high intrinsic cognitive load then this can lead to working memory overload. This is often 
what happens with novice programmers when the instructional design is poor. 

The important point is that when the intrinsic cognitive load of the material is high, then it is incumbent 
on the instructional designer to think very carefully and ensure that the extraneous cognitive load is as low 
as possible. A lot of research has been done in looking at ways of reducing extraneous cognitive load, for 
example (Chandler & Sweller, 1991; Kalyuga, Chandler, & Sweller, 1998; Tindall-Ford et al., 1997). 
These include: integrating diagrams and text so as to reduce the "split-attention" effect; goal-free problem 
solving; and the use of worked examples in problem solving. 

Germane Cognitive Load 
It is thought that if the instructional design is such that the extraneous cognitive load is kept to a mini-
mum, and the intrinsic cognitive load is not too high, then there may be some unused working memory 
available (Sweller et al., 1998). This could then be used by learners, with appropriate instructional design, 
to engage in conscious processing that helps in the construction of schemata in the particular domain of 
interest. This conscious processing is the germane cognitive load. An example is the use of part-complete 
solutions in the learning of problem solving (Paas, 1992; van Merrienboer, 1990; Van Merrienboer & De 
Croock, 1992). The studying of complete worked examples by students is seen as one way of reducing the 
extraneous cognitive load. When students have to complete an incomplete worked example then they 
have to "mindfully abstract" the schemata from the example in order to understand it. That is, they have to 
consciously process it and this increases the germane cognitive load. 

A Learning Model for Programming 
A learning model for programming has been designed that is firmly based on cognitive load theory. The 
use of worked examples in the learning of programming is sometimes known as the “reading” method and 
this method reduces the extraneous cognitive load on students. However it does not encourage students to 
think deeply about the examples being read and to “extract” the necessary schemata. However the “com-
pletion” method of learning programming requires students to have to complete part-complete programs 
thereby encouraging schemata production. The learning model makes use of the completion method and 
has the following attributes: 

1. Support for student centred learning. Different learners gain expertise in programming at different 
rates. It is therefore important that the learning environment supports independence thereby allowing 
learners to construct knowledge within their own time frames. (eg. Jonassen, 1996). The completion 
method is a refinement of the reading method of learning programming and this method allows learn-
ers to work through appropriate materials independently and in a self-paced manner and also supports 
active learning with students having to engage with learning materials. 

2. Support for the creation of appropriate schemata and mental models. The learning environment 
should support the creation and amendment of appropriate schemata that pertain to programming and 
also support the mental processing that needs to take place during this process (eg Winn, 1996). The 
completion method supports such schemata development in the form of stereotypical programming 
plans. The environment should also support the development of mental models of notional machine 
processing. 



COLORS for Programming 

536 

3. Support for the reduction of extraneous cognitive load. The learning environment should help re-
duce the extraneous cognitive load as programming is considered to have a high intrinsic cognitive 
load (eg Sweller, 1998). This is supported by using the reading method of learning programming. 

4. Support for the increase of germane cognitive load. To promote programming skills, cognitive load 
theory suggests that a learning environment should encourage learners to mindfully abstract appropri-
ate programming patterns (eg Paas, 1992). The removal of lines of code from complete programs in-
creases the germane cognitive load on learners. The environment would also require learners to have 
to answer questions concerning their programming solutions. 

5. Support for the promotion of reflection and higher order thinking. The development of problem 
solving skills in a specific domain of knowledge requires support for higher order thinking with learn-
ers being encouraged to reflect on their solutions to given problems (eg McLoughlin, 1997). The 
completion method reduces the amount of lower order thinking that is required and encourages more 
higher order thinking to take place. 

COLORS for programming 
COLORS (Cognitive Load Reduction System) for program-
ming is a system that has been designed by the author to help 
students in their learning of programming at Edith Cowan Uni-
versity in Australia. It has been designed to try and meet the 
requirements of the learning model above and it has also taken 
into account a generic learning framework proposed by Oliver 
(1999). The framework is heavily influenced by his belief that 
constructivism best describes how learning takes place and it 
comprises three critical elements, these being: learning re-
sources; learning activities; and learner supports as shown in 
figure1. 
The overall design of COLORS for programming will now be 
described with reference to this instructional design framework. 

Learning Resources 
Learning resources provide the content for a course and can be thought of as the materials which are used 
to help students construct their knowledge and meaning with respect to a domain of knowledge. Tradi-
tionally these resources have been available in the form of books and lecture notes and the move to flexi-
ble technology based systems has led to a lot of content being made available electronically. Unfortu-
nately it has been estimated that many such systems are too content-oriented with 90% of planning and 
development being in content creation (Dehoney, 1999). 

This emphasis within COLORS is the completion method of programming and so the content is provided 
by a programming textbook (Schneider, 2000) and the lecture notes delivered by the lecturer. It is recog-
nised that on-line content and resources would be very useful to learners and is something that might be 
explored in the future. Typical content for programming courses includes descriptions of language syntax; 
data and control structures; descriptions of algorithms; descriptions of how to solve certain categories of 
problem; and example programs. 

Figure 1: Oliver’s Instructional 
Design Framework 



  Garner 

  537 

Learning Activities 
Learning activities are the second element of the instructional design framework and play a fundamental 
role in determining learning outcomes (Wild, 1997). The activities determine how learners engage with 
the various materials and well designed activities can help reduce the extraneous cognitive load and 
stimulate the germane cognitive load. 

The activities that are used within COLORS for programming comprise a set of programming problems 
and their part-complete solutions that need to be completed by a learner. The completion of a part-
complete solution is done by selecting appropriate lines of code from a set of possible lines and placing 
them in the “correct” locations within the corresponding part-complete solution; and / or keying-in appro-
priate lines of code. 

After “completing” a program, that program is tested in the programming environment of the particular 
language being used which, in this case, is Visual BASIC (VB). 

There are also questions that learners are expected to answer in connection with the program that they 
have just completed. Such questions are another way of stimulating students to construct knowledge by 
applying another form of germane cognitive load. 

These learning activities have been designed to be directly supported by a software tool, CORT (Code 
Restructuring Tool), that has been built by the author. 

Learning Supports 
Learning supports are the third element of the instructional design framework and can be thought of as the 
supports required to help guide and provide feedback to learners in a way that is responsive and sensitive 
to learner individual needs (McLoughlin, 1998). In “traditional” settings such supports have been pro-
vided by actively involved teachers (Laurillard, 1993) whereas in technology based learning environ-
ments, such supports are often known as “scaffolds” to help learners during their knowledge construction 
process (Roehler, 1996). In programming, an example of such a support is the facility that some pro-
gramming editors have to help complete lines of programming code for the user as they are keyed-in. It is 
usually accepted that scaffolding is gradually reduced during learning, this process being known as “fad-
ing”. 

In COLORS for programming, some learning activities act as learning supports and so the boundary be-
tween activities and supports is somewhat blurred. There are several learning supports in COLORS, some 
of which are directly supported by CORT. 

The first support is provided by the set of possible lines of code that is given to a learner to be used in the 
completion of a part-complete program. The level of this support can be varied by providing one of the 
following methods: 

Method 1. All of the lines of code that are missing from the program. 

Method 2. All of the lines of code that are missing from the program plus some extra lines of code that 
are not needed to complete the program. These extra lines act as distracters. 

Method 3. Zero or more lines of code that are missing from the program, other missing lines having to be 
keyed-in by the learner. 

The important variable that affects which of the above methods should be used for a given problem is the 
degree of difficulty of that problem. For example if a problem is relatively simple then method 2 might be 
used, whereas method 1 might be used with a more difficult problem. Fading is not straight forward as the 
programming problems in latter the part of a programming course are usually more difficult than earlier 
ones and it might therefore still be necessary to use method 1 supports for some of the problems. CORT 



COLORS for Programming 

538 

has been designed to provide a mechanism to easily manipulate the missing lines of code from a part-
complete solution. 

The second support provided by COLORS is a facility to easily move missing lines of code into a part-
complete solution and within that solution. Such support has not been available in previous work with re-
spect to the completion method and yet this is seen as important in helping reduce extraneous cognitive 
load. 

The third support provided by COLORS is the provision, for each programming problem, of a screen im-
age of the problem interface. The interface is the output “form” or window that is displayed to a user of a 
program when it is executed and includes the various objects such as buttons and text boxes. The screen 
image is also annotated with the internal names of the objects (i.e. the object names that are used within 
the programming code) thereby reducing the split-attention effect (eg. Chandler, 1991). 

The fourth support provided by COLORS is the environment of the programming language itself. Many 
such modern programming environments, or integrated development environments, provide sophisticated 
facilities to help programmers debug their programs. These include the tracing, or step by step execution, 
of code and the ability to display the contents of variables. The language used is Visual BASIC (VB) 
which has excellent debugging facilities that can be used by novices in their learning of programming. 

Other supports that are provided by COLORS include the “conventional” ones such as the provision of a 
tutor, other students, and a textbook. When campus based students require help in solving a programming 
problem, they might directly seek such help 
from their tutor or fellow students. With a 
flexible, technology based course that sup-
port would most likely be provided by 
email. Learners also look to their conven-
tional textbook which, in addition to provid-
ing content, can also be considered to pro-
vide support. 

Summary of COLORS for pro-
gramming 
The various components of COLORS for 
programming were developed from the 
learning model for programming using the 
completion method and from the instruc-
tional design framework proposed by Oliver 
(1999). The code restructuring tool, CORT, 
was designed to support certain features of 
COLORS for programming. Figure 2 sum-
marises the development of COLORS and 
also those features supported by CORT. 

CORT (Code Restructuring Tool) 
CORT was designed to provide a basis for learning activities that in turn provide learner supports. CORT 
will be described from a learner’s standpoint. 

Figure 2: COLORS for Programming 



  Garner 

  539 

CORT Description: from a Learner’s Standpoint 
 

1. The learner runs the CORT program and 
loads a “completion” problem. The problem 
description is displayed. The only actions 
that can be taken are to print out the descrip-
tion or to close the window. The problem de-
scription may have been given to learners in 
hard copy format. 

 

2. After closing the problem description win-
dow, two parallel windows can be seen. The 
right-hand window contains the part-
complete solution to the problem and the 
left-hand window contains lines that can be 
used to complete the solution. These win-
dows can be expanded and contracted hori-
zontally so as to view the complete lines by 
clicking the corresponding  button. 

 

3. A learner can click on  to view the prob-
lem interface. This is a screen image show-
ing the expected output “form” for the prob-
lem that the learner is attempting. This im-
age is annotated with the internal VB names 
of the objects. This again lowers the extra-
neous cognitive load by reducing the “split-
attention” effect. 

 



COLORS for Programming 

540 

4. A line can be moved from the left to the 
right by: highlighting the line in the left-hand 
window; highlighting the line in the right-
hand window after which the line from the 
left is to be placed; and clicking the  but-
ton. Several lines can be highlighted in the 
left-hand window and moved in one opera-
tion. Lines can also be moved back into the 
left-hand window. 

 

5. Lines can be rearranged in the right-hand 
window by moving them up or down. Lines 
can also be indented or outdented. Blank 
lines can be inserted before or after an exist-
ing line and blank lines can be deleted. 

 

6. Lines of code can be keyed-in by learners 
using a simple text editor. This can be in-
voked by clicking on the  button. After 
editing the program, the editor is closed by 
clicking the Return button and the changes 
are reflected in the original right-hand win-
dow.  

 

7. When a learner is ready to test their solution, 
they can click on the  button and the code 
from the right-hand windows is pasted into 
the Windows Clipboard. They then run VB 
and open a file that contains the VB output 
“form” but does not contain any code. This 
figure shows an example VB “form” with an 
empty “code” window. 

 



  Garner 

  541 

8. A learner now pastes the contents of the 
Windows Clipboard into VB’s empty code 
window by clicking the  button. The pro-
gram can then be run and / or traced in VB. 
After testing a program in VB, a learner can 
if necessary switch back to CORT and 
amend the solution, recopy the code and re-
paste it into VB. This is an iterative process 
that is carried out until the program works to 
the learner’s satisfaction. 

 

Conclusions 
COLORS for programming and CORT have been used with students at Edith Cowan University during 
semester 2, 2001, and data has been collected concerning its use as part of a research project. The data is 
of a qualitative nature, the data collection methods including questionnaires, on-line journals, observation, 
and interviews. The data has not yet been analysed however preliminary feedback suggests that students 
enjoy using the system and that cognitive load is reduced. 

Some student comments include: 

With CORT it was good as it enabled me to finish something and therefore I prefer to 
use it. Getting programs working makes you feel better. 

If I was just asked to study code, then I would not do it properly, so CORT really helps. 

Very happy with CORT because lines are there to help. About the right amount of help 
is provided. If I did not use CORT then I would find it very difficult to know where to 
start. 

The data analysis that has yet to be undertaken will hopefully reveal interesting insights into the useful-
ness of the COLORS for programming system. 

References 
Carroll, W. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Com-

puting Psychology, 86, 360-367. 

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293-332. 

Chandler, P., & Sweller, J. (1996). Cognitive Load while Learning to use a computer program. Applied Cognitive Psychology, 
10, 151-170. 

Chase, W. G., & Simon, H. A. (1973). The Mind's Eye in Chess. In W. G. Chase (Ed.), Visual Information Processing. New 
York: Academic. 

Dehoney, J., & Reeves, T. (1999). Instructional and social dimensions of class web pages. Journal of Computing in Higher 
Education, 10(2), 19-41. 

Fowler, W. A. L., & Fowler, R. H. (1993). A Hypertext Approach to Computer Science Education Unifying programming 
Principles. Journal of Multimedia and Hypermedia, 2(4), 433-441. 

Green, R. (1998). Learning Programming through JavaScript. Paper presented at the Australian Computers in Education Con-
ference, Adelaide, Australia. 

Jonassen, D. H., & Reeves, T. C. (1996). Learning with technology: Using computers as cognitive tools. In D. H. Jonassen 
(Ed.), Handbook of research on educational communications and technology (pp. 693-719). New York: Macmillan. 



COLORS for Programming 

542 

Kalyuga, S., Chandler, P., & Sweller, J. (1998). Levels of expertise and instructional design. Human Factors, 40, 1-17. 

Laurillard, D. (1993). Rethinking University Teaching: A Framework for the Effective use of Educational Technology.: London 
Routledge. 

McLoughlin, C. (1997). Investigating conditions for higher order thinking in telematics environments. Unpublished PhD, Edith 
Cowan University, Perth. 

McLoughlin, C., & Oliver, R. (1998). Scaffolding Higher Order Thinking In A Telelearning Environment. Paper presented at 
the Ed-Media/Ed-Telecom 98 World Conference On Educational Multimedia And Hypermedia & World Conference On 
Educational Telecommunications, Virginia. 

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity to Process Information. 
Psychological Review(63), 81-97. 

Oliver, R. (1999). Exploring strategies for on-line teaching and learning. Distance Education, 20(2), 240-254. 

Paas, F. G. W. C. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load ap-
proach. Journal of Educational Psychology, 84, 429-434. 

Roehler, L. R., & Cantlon, D. J. (1996, May 10th 1996). Scaffolding: A Powerful Tool in Social Constructivist Classrooms, 
[HTML Document]. Available: http://www.educ.msu.edu/units/literacy/paperlr2.htm [1998, 3/5/98]. 

Schneider, D. (2000). An introduction to programming in Visual BASIC 6.: Prentice Hall. 

Schneider, W., & Shiffrin, R. (1977). Controlled and automatic human information processing: Detection, search and attention. 
Psychological Review, 84, 1-66. 

Simon, H., & Gilmartin, K. (1973). A Simulation of memory for Chess Positions. Cognitive Psychology, 5, 29-46. 

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design. Educa-
tional psychology review, 10(3 Sep 01 1998), 251-296. 

Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental 
Psychology: Applied, 3, 257-287. 

van Merrienboer, J. J. G. (1990). Strategies for Programming Instruction in High School: Program Completion vs. Program 
Generation. Journal of educational computing research., 6(3), 265-. 

van Merrienboer, J. J. G., & De Croock, M. B. M. (1992). Strategies for computer-based programming instruction: program 
completion vs. program generation. Journal of Educational Computing Research, 8(3), 365-394. 

Wild, M., & Quinn, C. (1997). Implications of educational theory for the design of instructional multimedia. British Journal of 
Educational Technology, 29(1), 73-82. 

Winn, W., & Snyder, D. (1996). Cognitive Perspectives in Psychology. In D. H. Jonassen (Ed.), Handbook of research on edu-
cational communications and technology (pp. 112-142). New York: Macmillan. 

Biography 
Stuart Garner is a member of the school of Management Information Systems within the faculty of 
Business and Public Management at Edith Cowan University in Perth, Western Australia. He teaches in 
the areas of systems and software development, and Web commerce development. 


