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Abstract 
When the same information is used to support decisions and to evaluate performance, a falsely optimistic 
view of performance may result. An example occurs in quality control during ship loading for iron ore 
export. Ore quality depends upon consistent composition. Ore is sampled periodically during reclamation 
from stockpiles. The ship loader was moved from between source stockpiles when the sample assays 
differed from target composition. Each ship loader move incurred costly delays. 

We found the apparent variations in composition could be largely ascribed to measurement error, and that 
intended correction during ship loading might even be harming quality. 

The policy was changed, to load ships from a single stockpile without interruption. Sample assays were 
used to evaluate performance, not to drive decisions. Data are analyzed from 466 shiploads, spanning the 
years before and after the change of policy, to compare quality performance, as measured by the exporter 
and by the customer. 

Keywords: MIS, DSS, Mining, Quality Control, Performance Evaluation. 

Introduction 
Management decisions require information. Evaluation of performance requires information. But when 
the same information is used to support decisions and to evaluate performance, a falsely optimistic view 
of performance may result. The paradox is illustrated by examples showing the effects can be substantial. 
Separation of the decision support and performance evaluation uses of information is proposed as an 
important principle in the study of Informing Systems. 

As a simple example, consider a shooter aiming at a target. If the shooter adjusts after each shot to correct 
for the distance from target of the previous shot, then the error may grow without limit, if the random 
error is comparable in magnitude to the gun’s systematic bias.  

The principle has been applied to ship loading and quality control for iron ore export. Quality of exported 
ore depends upon consistent composition, not only in iron content, but also in percentages of silica, alu-
mina and phosphorus. Ore is railed from the mine to the port and stored in large stockpiles, then reclaimed 
to load ships for export (Everett, 1996, 1997, 2001, Everett, Howard & Kamperman, 2001). The ore is 
sampled periodically while being reclaimed. Comparison of sample assays with the target composition 

was previously used to decide when to move the 
ship loader from one stockpile to another. Each 
ship loader move incurred costly delays, and a great 
deal of decision-making effort from the Process 
Control Officer (PCO). It was worrisome that 
customers reported greater composition variability 
than that estimated from the ship loading samples. 
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Investigation suggested random sampling errors were of comparable magnitude to the apparent composi-
tion discrepancies that drove adjustments of the source stockpiles during ship loading. If this were so, 
then it follows that the resulting ore variability as measured at the port was an underestimate of the true 
variability. 

The policy was then changed, to load ships from a single stockpile without interruption. Sample assays 
were used to evaluate performance, not to drive decisions. It was expected that variability measured dur-
ing loading would increase, but variability measured by customers should not. Quality should be 
maintained, while ore handling costs would be considerably reduced. 

As a further benefit, separating decision support from performance evaluation would enable us to obtain 
separate estimates of the ore variability and of the assay errors for the exporter and for the customers, 
from the exporter and customer assay data. We should also be able to find which customers generate 
assays significantly different in level or variability from those of the exporter. 

Aiming at a Target 
If you fire a gun at a target and miss by an amount “t”, you might be tempted to adjust your aim by an 
amount “–t” for the next shot. If the discrepancy were entirely caused by the gun’s deviation, then that 
correction would be perfect. If the discrepancy were entirely caused by random error, then your next shot 
would probably be worse than your first. If you continued the same adjustment policy, your error would 
increase without limit as a “drunken walk”, with amplitude proportionate to the square root of the number 
of shots, as shown in Figure 1. The blue dots show the results for a hundred random shots, each with 
normally distributed error, of unit amplitude. The red dots show the same situation if the shooter adjusts 
each time by the amount of the previous shot’s error. 

Optimum Adjustment 
Generally, the discrepancy of a shot will be the sum of the gun’s real deviation (or consistent bias) and a 
random error. Assume that the gun’s real deviation is unknown, but comes from a normally distributed 
population with zero mean and amplitude “τ”. Similarly, the random error is assumed normally distrib-
uted with zero mean and amplitude “α”. 

The discrepancy for the original shot is the sum of the deviation and the random error: 

d0 = τεt + αεa0 …………………… (1) 

If you correct by a proportion “k” of the original discrepancy, then the next discrepancy is: 

d1 = -k(τεt + αεa0) + τεt + αεa1 …………………… (2) 
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Figure 1: Aiming at a Target (Zero Real Deviation, Unit Standard Error) 
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So the “standard discrepancy” σ1 is given by: 

σ1
2 = E(d1

2) = (1-k)2τ2 + (1+k2)α2 …………………… (3) 
E(d1

2) is minimised if  

k = τ2/(α2+τ2)  …………………… (4) 

If α and τ are equal, k should therefore be 0.5 (reducing the standard error by only 13.4%). The optimum 
k is always less than 1.0, if α>0 (i.e. if there is any random error). 

Figure 2 shows the standard discrepancy σ1 as a function of k, when τ and α are equal. If the random error 
is as large as the bias, then full adjustment provides no improvement over zero adjustment. 

Loading Ships with Iron Ore 
So what has all this got to do with loading iron ore onto ships? 

Iron ore is railed from the mine to port, crushed, and then stacked to build stockpiles, typically of 100 to 
200 kilotonne capacity. The ore is handled and the stockpiles are built with the objective of achieving as 
uniform ore composition as possible. This uniformity of composition is required not only in iron, but also 
in the contaminants such as silica, alumina and phosphorus. 

Ships arrive in port to be loaded with iron ore cargoes of anything from about 50 to 120 kilotonnes. The 
cargoes are reclaimed from one or more stockpiles. While the ore is being loaded it is sampled and as-
sayed at intervals of 8 or 9 kilotonnes. When the ship arrives at its destination, the customer unloads the 
ore. The customer then assays it again. The ore is fed into blast furnaces, whose smooth operation de-
pends upon the ore having consistent composition, in iron and in each of the contaminant minerals. 

Records are therefore available for each ship, for the assay values as measured by the exporter and by the 
customer. Until the end of 2000, the Process Control Officer (PCO) oversaw the loading of ships. The 
PCO monitored the assay values from material being sampled as a ship was being loaded. When assays 
were found to be drifting from target, the PCO ordered a change of source stockpile with the intention of 
bringing the shipload back to target composition. 

It was then realised that assay measurement errors could be of a magnitude comparable to the real varia-
tion in ore composition.  

Assay samples are extracted by periodically slicing off some of the ore from the conveyor belt. Assay 
errors had been estimated by splitting these samples into two sub-samples. The sub-samples were pre-
pared and analysed separately, and the answers compared, to provide an estimate of the error. It was 
realised that this procedure underestimated the total assay error, since it considered only the preparation 

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.2 0.4 0.6 0.8 1 1.2

Proportional Standard Discrepancy

Proportional Adjustment "k"

α=τ/2

α=τ

α=2τ

Figure 2: Standard Error Remaining after Proportional Adjustment 
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and assay error, and ignored the error inherent in removing the sample from the conveyor belt (see Pitard, 
1993).  

This suspicion was reinforced by an alternative estimation procedure. We compared the aggregate assays 
from stacking each stockpile with the assays later obtained when the stockpile was reclaimed. From the 
difference between the stacking composition and the reclaim composition, and from the number of build 
assays and reclaim assays, we could estimate the total sampling error. It was found to be considerably 
larger than the split sample error, and was comparable to the expected variation in ore composition. How-
ever, it was acknowledged that this stack/reclaim method could overestimate the sampling error for 
reclaim assays, because it gave a weighted average estimate of the stacking and reclaiming errors. When 
iron ore is being stacked to a stockpile, it is of more varied composition than when it is reclaimed. Ore is 
stacked along the length of the pile, and reclaimed across its width, to achieve efficient blending. Conse-
quently, the assay errors during reclaiming are expected to be less then the assay errors during stacking. 

Despite this reservation, the evidence suggested that assay errors during reclaiming were comparable to 
the real variation in ore composition. If so, then the situation was analogous to the problem of aiming at a 
target, as discussed above. Adjustment for apparent departures from target composition, if arising from 
measurement error, could result in more variability in ship composition rather than less. It could also 
cause the exporter’s recorded ship variability to be less than the real variability, and thus explain why the 
customers were recording a greater variability when they unloaded the cargoes than the exporter was 
when loading the cargoes. 

Using the sample assays, obtained during loading, as a decision support tool was not only suspected of 
spoiling quality, the reverse of intention. It also rendered the data invalid for performance evaluation, 
because it removed the independence between measurement error and real composition variability, as we 
shall see in the analysis below. Further, if we could remove the delays from changing source stockpiles, 
we could greatly reduce operational and demurrage costs. 

As a result of these considerations, the ship loading policy was changed from the beginning of the year 
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Figure 3: Port, Smoothed, and Customer Shipment Assays for Iron 
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2001. Ships are loaded from stockpiles to achieve target grade as planned before ship loading commences. 
The plan is based on assays taken while the stockpiles were being built, and is no longer revised in re-
sponse to assays taken while the ship is being loaded. 

Data are now available for shipments of an iron ore product, for 228 ships loaded during the year 2000 
and for 240 ships loaded during the year 2001. For each shipment, records are available of the assays for 
each mineral, as recorded by the exporter and as recorded by the customer. Shipments were made to eight 
different customers. 

Figures 3 and 4 show the data for the 448 shipments made during the two-year period. The figures are for 
iron and silica respectively. Similar data were recorded for the other two major contaminants, phosphorus 
and alumina. The blue circles are exporter assays made during loading, while the red circles are customer 
assays made during unloading of the shipments. The exporter (or port) assays have been exponentially 
smoothed to obtain the blue trend line. 

The data enable us to estimate the ore variability and measurement errors, made by the exporter and by 
the customers, for the 2001 data. Because of the confusion between decision support and performance 
evaluation arising from the earlier procedure, it is not so straightforward to carry out the analysis for 
2000. The data also permit an examination as to whether the change of policy has had a significant affect 
on quality. It has been found that the change of procedure, no longer changing source stockpile in re-
sponse to apparent disparities from target, has generated considerable operational savings, including 
reduction in machine time and reduction in demurrage costs, without any appreciable loss in quality as 
measured by customers.  

It was also of interest to examine for each customer whether the assay levels or the assay variability differ 
significantly from the exporter’s records. Such comparisons clearly have value in any negotiation regard-
ing product payment and product quality. 
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Analysis of the 2001 Shipments 
We will first consider the (N=240) shipments made during 2001, after the policy of responding to sam-
pling assays during ship loading had been discontinued. For each shipment, the record gave its tonnage, 
and the composition as measured by the exporter’s assays, and as measured by the customer’s assays.  

Shipments were made to J=8 different customers. “Nj”, the number of shipments to customer “j”, ranged 
from 7 to 47. 

First consider a single customer “j”. Using terminology analogous to the target aiming example consid-
ered above, let “τj” be the standard deviation of the ore’s true composition, and “αj” and “βj” respectively 
be the standard error of measurements made by the exporter and customer respectively. Our estimates of 
τj, αj, and βj will be denoted by “�j”, “�j”, and “�j”. Let σa, σb and σab be the standard deviation (around 
trend) of ship assays made by exporter and customer, and their covariance, with sa, sb and sab being the 
estimates of these parameters derived from the data. 
Let “Xaji” and “Xbji” be the shipment assay, weight wji kilotonnes, as recorded by exporter and customer 
for the ith ship to that customer, with means “Maj” and “Mbj”.  

The port data has an overall estimated trend “T(time)”, which is a function of time. This trend, as shown 
in Figures 3 and 4, was estimated by averaging backward and forward exponential smoothing of the port 
data.  

The random “discrepancy”, “xaji” or “xbji” for each shipment, as measured by the exporter or customer, is 
the composite of the ore’s true deviation from trend and its assay error, after removing any systematic 
bias. Let cj be the estimated systematic bias (if any) of customer assays relative to exporter assays. 

For the shipments to customer “j” we can calculate: 

cj = Mbj – Maj = ∑i wji(Xbji-Xaji)/∑iwji  ……… (5) 

We can use a t-test to check if cj is significantly different from zero. If it is, then we can conclude that the 
customer’s assays have a significant bias relative to the exporter’s assays. 

t-test = cj/scj, where scj
2 = ∑i (Xbji - Xaji)2/(Nj-1) ……… (6) 

xaji = Xaji - T(time)  = τjεtji + αjεaji ……… (7) 

xbji = Xbi - T(time) - cj = τjεtji + βjεbji ……… (8) 

Where εtji, εaji, εbji are random samplings from populations εtj, εaj, εbj, which are each normally distributed, 
of unit variance and zero correlation. 

σaj
2 = Ei (xaji

2) = τj
2 + αj

2
 ……… (9) 

σbj
2 = Ei (xbji

2) = τj
2 + βj

2
 ……… (10) 

σabj = Ei (xajixbji) = τj
2  ……… (11) 

So we can calculate estimates for each customer set of data: 

(Ore Standard Deviation)2 = tj
2 = ∑i xajixbji/(Nj-1) = sabj ……… (12) 

(Exporter Standard Error)2 = aj
2 = ∑i xaji

2/(Nj-1) - tj
2 = saj

2 – sabj ……… (13) 

(Customer Standard Error)2 = bj
2 = ∑i xbji

2/(Nj-1) - tj
2 = sbj

2 – sabj  ……… (14) 

Finally, we can combine the results from all customers to find overall estimates t, a and b.: 

t2 = ∑i,j xajixbi/(N-J) = sab  ……… (15) 

a2 = ∑i,j xai
2/(N-J) - t2 = sa

2 – sab ……… (16) 



  Everett, Kamperman, & Howard 

  433 

b2 = ∑i,j ixbi
2/(N-J) - t2 = sa

2 – sab ……… (17) 

F-tests were used to test whether the customer standard errors were significantly larger than the exporter 
standard errors. The F-ratio was calculated as F = sb

2/sa
2 = (t2 + b2)/(t2 + a2). 

Because each variance was the sum of the assay error variance plus the ore composition variance, which 
could be assumed independent, an F-ratio significantly greater than one is evidence that the customer 
assay errors are larger than the exporter assay errors (i.e. that β>α). 

Summary of the 2001 Shipments Analysis 
For each element in each shipment to customer “j”, we have a data record {wji, Xaji, Xbji }, where wji is the 
weight in kilotonnes, and Xaji and Xbji are the exporter and customer assays for the shipment. 

From the set of data records for customer j, we derive estimates {Maj, Mbj, cj, saj, sbj, sabj),  

Applying a t-test, we check whether cj differs significantly from zero. If it does, we conclude that assays 
carried out by customer j have a systematic bias relative to those carried out by the exporter. 

For customer j we obtain tj, aj, and bj, estimates of the ore standard deviation, and the exporter and cus-
tomer standard errors. Combining the data records provides overall estimates t, a, and b. F-tests on the 
variance ratios test for significant difference in standard error between exporter and customers. 

Analysis of the 2000 Shipments 
Up to the end of 2000, the PCO adjusted source stockpiles in an attempt to compensate for discrepancies 
from target apparent from assays taken during loading. 

With this policy, if the exporter (or port) assay error is comparable to the ore variability, we had a situa-
tion analogous to the target-aiming model depicted in Figures 1 and 2. The correction for apparent 
discrepancies may well have done more harm than good to the shipment quality, quite apart from its 
delays to the loading process. 

Using the same terminology as for the 2001 data, we add the proviso that, under the earlier policy, the 
material loaded was chosen so as to correct for an unknown proportion “k” of the apparent discrepancy.  

Equations (5) and (6), as developed for the 2001 data above, remain unaltered. So we can examine differ-
ences in assay means as for the 2001 data. 

Comparison of assay variability is more difficult, because we can no longer treat ore deviations and ex-
porter assay error as independent. When we allow for the correction for apparent discrepancies during 
loading, equation (7) becomes: 

xaji = τjεtji + αjεaji - k(τjεtji + αjεaji) = (1-k)τjεtji -  kαjεaji + αjεaji ……… (18) 

In equation (18), the real ore deviation is (1-k)τjεtji -  kαjεaji, and the exporter assay error is αjεaji.  

Thus the real ore deviation and the exporter assay error are now negatively correlated. The real ore stan-
dard deviation (as shipped) is given by: 

(Ore Standard Deviation)2 = τ j2 = (1-k)2τj
2 + k2αj

2 ……… (19) 
If k approaches one, then the apparent variability as measured at the port would approach zero, but the 
real variability would approach αj, which would be a net increase in real variability: τ j  > τj if αj > τj. 

This is analogous to the situation discussed in the section on “Aiming at a Target”. The apparent variabil-
ity of equation (18), as measured by the exporter, will be decreased by the factor (1-k). For τ j to be less 
than τj requires k < 2/(1+αj

2/τj
2ni). To minimise τ j requires k = 1/(1+αj

2/τj
2).  
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Equations (8) to (11) must be revised to: 

xbji = (1-k)τjεtji -  kαjεaji + βjεbji  ……… (20) 

σaj
2 = E(xaji

2) = (1-k)2(τj
2 + αj

2) = τ j2 + αj
2 - 2kαj

2
 ……… (21) 

σbj
2 = E(xbji

2) = (1-k)2τj
2 + k2αj

2 + βj
2

 = τ j2 + βj
2
 ……… (22) 

σabj = E(xajixbji) = (1-k)2τj
2 - k(1-k)αj

2 = τ j2 - kαj
2 ……… (23) 

The three equations (21, 22 and 23) now contain four unknowns (τj, αj, βj and k), so cannot be solved 
without further evidence. This indeterminacy arises because the real ore deviation and the exporter assay 
error cease to be independent when the exporter assay is used to change the ore selection. However the 
following general observations are relevant: 

•  Customer assay variance is still the sum of the real ore variance and the customer error variance. 

•  Exporter assay variance is now less than the sum of the real ore variance and the exporter error vari-
ance, by the amount 2kαj

2. 

•  Covariance is now less than the real ore variance, by the amount kαj
2. 

For the 2001 data, we used the F-ratio, calculated as F = sb
2/sa

2 = (t2 + b2)/(t2 + a2), to test whether the cus-
tomer assay errors were larger than the exporter assay errors. The adjustment procedure used in the year 
2000 means that the exporter assay error cannot be assumed independent of the ore variation, so we can-
not use this test on the variance ratio to find if the customer errors are larger than the port errors. Although 
we can say sb

2 = t2 + b2, we now have sa
2 = t 2 + a2 - 2ka2 ≠ t 2 + a2. 

Results for the Assay Means 
Table 1 shows the mean port and customer assays results from the analysis of the 2000 and 2001 shipping 
data. For each customer, and for each mineral (iron, phosphorus, silica and alumina) the table shows the 
number of shipments, the mean assay as reported by the exporter and by the customer, and the difference 
between the means, which is tested for significance by a t-test. The results are summarised for the 228 
shipments in 2000, the 240 shipments in 2001, and for the total 468 shipments. 

In the t-tests of Table 1, many comparisons are being made simultaneously, so a Bonferroni correction to 
the significance levels has been applied (Bonferroni, 1936; Miller, 1981). If we use raw alpha values, 
twenty simultaneous independent tests on purely random data would yield an average of one test spuri-
ously significant at the 5% level. To compensate, the Bonferroni significances are calculated as (1-(1-
α)^n), where n is the number of simultaneous independent tests. The difficulty remains as to how many 
independent tests are being made simultaneously, since the data are partially correlated. Much ink has 
been spilt arguing the question (see, for example, Perneger, 1998). In this example, an n of 8 (the number 
of customers) has been used, to calculate the reported Bonferroni significances for the individual custom-
ers. No Bonferroni correction has been applied to the “All Ships” summary statistics.  

There is a consistent tendency for customers to report significantly lower iron and silica, and significantly 
higher phosphorus and alumina, than does the exporter. This systematic bias is particularly noticeable for 
iron, which may relate to the fact that payment is directly related to the customer’s iron assay. 
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As we have seen in the theoretical discussion, the comparison of means is not affected by the earlier 
adjustment policy, so the conclusions regarding systematic bias are as valid for the year 2000 data as for 
the year 2001 data. 

Results for the Assay Variances 
Table 2 shows the standard deviations of port and customer assays for year 2000 and year 2001 ship-
ments. The F-statistic (the ratio of customer to port variances) has been calculated for each customer, and 
for the year’s total shipments.  

In each year, the variance of the customer assays significantly exceeded the variance of the port assays, 
for each mineral.  

For the year 2001, equations (9) and (10) show that the port and customer assay variances are (τ2+α2) and 
(τ2+β2) respectively. The estimate of the customer variance (τ2+β2) is significantly greater that the esti-
mate of the port variance (τ2+α2). Therefore we have significant evidence that the customer error (β) is 
greater than the port standard error (α). 

Customer Ships Fe P SiO2 Al2O3 Fe P SiO2 Al2O3 Fe P SiO2 Al2O3 Fe P SiO2 Al2O3

Yr 2000
1 19 58.45 .042 4.95 1.29 58.31 .041 4.80 1.28 -.14 -.001 -.15 -.01 4% 3%
2 17 58.43 .042 4.95 1.29 58.28 .044 4.96 1.35 -.14 .001 .01 .06 2% 4%
3 45 58.46 .042 4.93 1.28 58.28 .043 4.92 1.29 -.18 .001 -.01 .01 0%
4 10 58.50 .041 4.94 1.28 58.48 .041 5.02 1.27 -.02 .000 .09 -.01
5 2 58.37 .044 4.98 1.35 57.96 .045 5.01 1.44 -.42 .001 .04 .09
6 8 58.49 .042 4.94 1.27 58.06 .043 5.01 1.26 -.43 .002 .07 .00
7 49 58.48 .041 4.93 1.29 58.32 .042 4.97 1.32 -.16 .001 .04 .04 0% 0% 0%
8 32 58.41 .043 4.95 1.28 58.26 .043 4.93 1.30 -.15 .001 -.02 .02 0%
9 46 58.47 .042 4.93 1.30 58.48 .043 4.88 1.31 .01 .001 -.05 .02 3%

All Ships 228 58.45 .042 4.94 1.28 58.31 .043 4.93 1.30 -.15 .001 -.01 .02 0% 0% 0%
Yr 2001

1 25 58.57 .041 5.01 1.29 58.41 .041 4.84 1.30 -.16 .001 -.17 .01 0% 0%
2 21 58.57 .040 5.02 1.29 58.52 .043 4.97 1.38 -.05 .002 -.04 .10 0%
3 42 58.55 .041 5.00 1.28 58.36 .042 4.95 1.30 -.18 .001 -.05 .02 0% 0% 1%
4 7 58.55 .041 4.98 1.30 58.46 .042 5.06 1.27 -.09 .002 .07 -.03
6 8 58.54 .041 4.96 1.29 58.15 .043 4.96 1.30 -.39 .002 .00 .00
7 55 58.55 .041 5.00 1.29 58.37 .042 5.00 1.33 -.18 .001 -.01 .04 0% 0% 0%
8 47 58.53 .041 5.01 1.29 58.39 .041 4.95 1.32 -.14 .001 -.06 .03 0% 2% 1%
9 35 58.53 .040 5.00 1.30 58.35 .040 4.97 1.31 -.18 .000 -.03 .01 0%

All Ships 240 58.54 .041 5.01 1.29 58.39 .042 4.95 1.32 -.16 .001 -.05 .03 0% 0% 0% 0%
Two Yrs

1 44 58.52 .041 4.98 1.29 58.37 .041 4.82 1.29 -.15 .000 -.16 .00 0% 0%
2 38 58.52 .041 4.99 1.29 58.43 .043 4.97 1.37 -.09 .002 -.02 .08 0% 0%
3 87 58.50 .041 4.96 1.28 58.32 .042 4.93 1.30 -.18 .001 -.03 .02 0% 0% 1% 0%
4 17 58.53 .041 4.96 1.29 58.47 .042 5.04 1.27 -.05 .001 .08 -.02
5 2 58.37 .044 4.98 1.35 57.96 .045 5.01 1.44 -.42 .001 .04 .09
6 16 58.52 .041 4.95 1.28 58.11 .043 4.98 1.28 -.41 .002 .03 .00 3% 3%
7 104 58.51 .041 4.97 1.29 58.35 .042 4.98 1.33 -.17 .001 .02 .04 0% 0% 0%
8 79 58.48 .041 4.99 1.29 58.34 .042 4.95 1.31 -.14 .001 -.04 .02 0% 3% 0%
9 81 58.50 .041 4.96 1.30 58.41 .042 4.92 1.31 -.08 .001 -.04 .01 1% 0%

All Ships 468 58.50 .041 4.98 1.29 58.35 .042 4.94 1.31 -.15 .001 -.03 .02 0% 0% 0% 0%

Load at Port Customer Unload Customer - Port Signif. Customer - Port

Table 1: Mean Assays and Port to Customer Differences 
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For the year 2000, where the port material was being adjusted in response to port assays, the port and 
customer variances are represented by the more complex equations (21) and (22) so cannot be directly 
used to compare the port and customer standard errors. 

Table 2 also shows the results of F-tests checking whether the variances in 2001 are significantly changed 
from 2000. The customer variances have not changed consistently: the customer phosphorus and alumina 

Customer Ships Fe P SiO2 Al2O3 Fe P SiO2 Al2O3 Fe P SiO2 Al2O3 Fe P SiO2 Al2O3

Yr 2000
1 19 .07 .001 .06 .04 .13 .002 .12 .11 3.7 2.9 3.5 8.3 4% 4% 0%
2 17 .06 .001 .06 .03 .12 .003 .12 .04 4.4 7.4 4.6 2.2 2% 0% 2%
3 45 .06 .001 .06 .04 .19 .002 .09 .05 11.8 3.6 2.1 2.0 0% 0%
4 10 .06 .001 .08 .03 .15 .001 .08 .03 6.2 1.2 1.1 1.1
5 2 .07 .002 .06 .09 .10 .002 .09 .11 1.8 1.0 2.5 1.3
6 8 .07 .001 .05 .04 .18 .001 .09 .03 7.4 1.8 3.2 0.8
7 49 .06 .001 .05 .03 .13 .001 .07 .04 4.9 3.3 2.0 2.6 0% 0% 1%
8 32 .06 .001 .05 .03 .14 .002 .14 .05 4.8 7.1 7.1 2.4 0% 0% 0%
9 46 .09 .001 .07 .04 .21 .002 .11 .08 5.9 4.3 2.2 4.2 0% 0% 3% 0%

All Ships 228 .07 .001 .06 .03 .17 .002 .11 .06 6.2 4.1 2.9 3.3 0% 0% 0% 0%
Yr 2001

1 25 .10 .001 .09 .03 .13 .001 .11 .07 1.7 2.6 1.7 4.5 0%
2 21 .08 .001 .08 .03 .20 .003 .12 .04 5.5 16.9 2.1 2.0 0% 0%
3 42 .08 .001 .09 .04 .14 .002 .10 .05 3.5 3.1 1.4 1.7 0% 0%
4 7 .08 .000 .06 .05 .17 .001 .09 .07 4.5 2.6 2.4 1.7
6 8 .09 .001 .07 .04 .19 .001 .11 .04 4.4 1.0 2.6 1.3
7 55 .10 .001 .06 .04 .17 .002 .09 .05 2.9 3.3 2.1 1.8 0% 0% 3%
8 47 .09 .001 .07 .03 .16 .003 .14 .05 3.0 16.1 3.5 3.1 0% 0% 0% 0%
9 35 .10 .001 .08 .03 .16 .001 .09 .06 2.4 1.6 1.2 2.6 5% 3%

All Ships 240 .09 .001 .08 .04 .16 .002 .11 .05 3.0 5.3 2.0 2.3 0% 0% 0% 0%
F-Ratio 2001/2000

Customer 1 2.0 1.0 1.8 0.7 1.0 0.9 0.9 0.4
2 2.3 0.5 1.9 1.1 2.8 1.1 0.9 1.0
3 1.8 1.0 1.9 1.0 0.5 0.8 1.2 0.8
4 1.7 0.2 0.5 2.8 1.2 0.4 1.2 4.4
6 2.0 1.7 1.6 1.2 1.2 0.9 1.3 2.0
7 2.7 1.5 1.5 2.0 1.6 1.5 1.5 1.5
8 2.2 1.1 1.9 1.0 1.3 2.6 0.9 1.3
9 1.3 1.3 1.2 0.8 0.5 0.5 0.7 0.5

All Ships 1.9 1.0 1.5 1.1 0.9 1.3 1.0 0.7
Signif. 2001/2000

Customer 1
2
3
4
6
7 0% 5%
8 2%
9

All Ships 0% 0% 2% 1%

Load at Port Std Devn Customer Std Devn F-Ratio Customer/Port Signif. Customer/Port

Table 2: Port and Customer Standard Deviations Compared 
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variances have gone up and down by 30% respectively, while the iron and silica variances are virtually 
unchanged. By contrast, the port variances for iron and silica (the major control variables under the old 
policy) have gone up by a highly significant 90% and 50% respectively. This result is consistent with the 
conclusion that the year 2000 variances in port assay were artificially reduced by the compensation pol-
icy, which was largely driven by measurement error.  

Covariance Analysis 
For the year 2001 data, we can use equations (12) to (14) to obtain tj as estimates of the ore standard 
deviation, τj, and aj and bj as estimates of the port and customer standard errors, αj and βj. 

Table 3 shows the results of this calculation for the year 2001 data. The blank spaces are where the statis-
tics were not calculable (square roots of negative numbers). Results for individual customers are 
indicative only, but we can place some reliance on the overall figures, based on the 240 shipments. 

It appears that the port assay errors are comparable, or a little smaller than, the ore standard deviation. The 
customer assay errors are consistently larger than the ore standard deviation. 

We cannot carry out the same analysis for the year 2000 data, because the adjustment factor k makes 
equations (21) to (23) indeterminate. However, it is not unreasonable to assume the same assay error 
estimate “a” for the year 2000 as for the year 2001. Combining equations (21) and (23) (for the whole 
year’s data) gives us the estimator: 

sa
2 - sab = (1-k)a2

 ……… (24) 

So, assuming the error a is consistent between the two years: 

k = 1 - (sa
2-sab)2000/a2 ≈ 1 - (sa

2-sab)2000/(sa
2-sab)2001 ……… (25) 

Hence we can also estimate the real ore variance and the customer error variance: 

� 2 ≈ (sab)2000 + ka2
 ……… (26) 

b2 ≈ (sb
2)2000 - � 2 ……… (27) 

The results of these calculations are shown in Table 4. Using the assumption that the port error variance is 
the same for the year 2000 as for 2001, we obtain estimates for the “correction” applied to each mineral as 
a proportion of the apparent discrepancy from target, as measured at the port. The correction factor esti-

Customer Ships Fe P SiO2 Al2O3 Fe P SiO2 Al2O3 Fe P SiO2 Al2O3

Yr 2001
1 25 0.100 .0008 0.064 0.025 .0005 0.058 0.019 0.082 .0013 0.095 0.062
2 21 0.045 .0005 0.045 0.017 0.071 .0004 0.065 0.024 0.192 .0027 0.107 0.037
3 42 0.057 .0009 0.076 0.025 0.050 .0004 0.039 0.025 0.132 .0015 0.069 0.038
4 7 0.082 0.053 0.055 .0005 0.018 0.150 .0008 0.069 0.038
6 8 0.061 .0010 0.081 0.038 0.068 .0005 0.012 0.183 .0004 0.070 0.023
7 55 0.086 .0008 0.060 0.037 0.047 .0004 0.017 0.013 0.143 .0014 0.067 0.039
8 47 0.089 .0004 0.075 0.029 0.031 .0007 0.009 0.135 .0033 0.113 0.045
9 35 0.062 .0008 0.076 0.034 0.080 .0008 0.034 0.009 0.144 .0012 0.053 0.045

All Ships 240 0.077 .0007 0.068 0.031 0.051 .0006 0.033 0.016 0.141 .0020 0.084 0.043

Ore SD (Around Trend) Port Ship Error Customer Ship Error

Table 3: Estimation of Ore Standard Deviation, Port and Customer Errors, for 2001 Ships 
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mate turns out to be in the feasible range 0% to 100% for each mineral, ranging from 91% for alumina 
down to 5% for phosphorus. This range is broadly compatible with the effort the PCO applied in trying to 
correct each mineral in response to the port assays. The calculations suggest that the “real” ore standard 
deviation and the customer standard errors in 2000 were little different from those in 2001. Consequently, 
nothing has been lost, and much operational efficiency gained, by abandoning the attempts at correction 
in response to port assays during loading. 

Conclusion 
This study has illustrated some of the problems and confusions that may arise when the same data are 
used for operational decision support and control as well as for performance evaluation. The main danger 
is that adjustment in response to discrepancies from target may actually spoil performance if the discrep-
ancies are largely due to measurement error 

It would be an overstatement to claim that the same data should never be used for operational decision 
support and control as well as for performance evaluation. As we have seen in the discussion of aiming at 
a target, a proportional response to error-bearing signal may improve performance, but full response is 
likely to cause hunting and increased discrepancy from target. It is also important to recognise that the use 
of the data to adjust operations destroys the independence between discrepancy and measurement error, 
making analysis more complex and lessening the information that can be extracted from the data, as has 
been seen in our analysis of data from 2000, as compared with the simpler fuller analysis possible for the 
2001 data, which had not been used for operational adjustment. 

The ship loading example has also provided an example where abandoning a complex adjustment policy 
has led to considerable operational savings with little or no decrease in quality. 

A side benefit of the change of policy and consequent analysis is that we are now able to identify which 
customers have assays differing significantly in level or variability from those of the exporter. Since such 
assays figure largely in negotiations determining price and quality, this information has considerable 
potential value to the exporter. 

Year Statistic Interpretation Fe P SiO2 Al2O3

2001 sa
2 Port Variance 8.3E-03 8.4E-07 5.6E-03 1.2E-03

sb
2 Customer Variance 2.9E-02 4.8E-06 1.4E-02 3.3E-03

sab Covariance 5.8E-03 5.5E-07 4.5E-03 9.5E-04
t Ore Std Devn 0.076 0.0007 0.067 0.031
a Port Std Error 0.050 0.0005 0.034 0.016
b Customer Std Error 0.141 0.0020 0.084 0.043

2000 sa
2 Port Variance 4.3E-03 8.3E-07 3.7E-03 1.1E-03

sb
2 Customer Variance 3.6E-02 3.7E-06 1.4E-02 4.2E-03

sab Covariance 3.0E-03 5.5E-07 2.8E-03 1.1E-03
a Port Std Error 0.050 0.0005 0.034 0.016
k  'Correction' Propn 48% 5% 20% 91%
t'  'Real' Ore Std Devn 0.065 0.0008 0.055 0.036
b Customer Std Error 0.179 0.0018 0.104 0.053  

Table 4: Estimation of Statistics, for 2000 Ships 
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